

An Introduction to Yocto

Author(s):

Plextek Services Limited, London Road, Great Chesterford, Essex CB10 1NY,

United Kingdom

General rights

Copyright for the publications made accessible via Plextek Services Limited is retained by

the author(s) and / or other copyright owners and it is a condition of accessing these

publications that users recognise and abide by the legal requirements associated with

these rights.

Take down policy

Plextek Services Limited has made every reasonable effort to ensure that this content

complies with UK legislation. If you believe that the public display of this file infringes

copyright, please contact hello@plextek.com providing details. We will review your notice

and remove content as appropriate in the circumstances.

mailto:hello@plextek.com

Who needs Yocto and what does it do for you?
To begin by teaching granny to suck eggs,
in order to understand Yocto you need to
understand what a Linux distribution (commonly
known as a ‘distro’) is.

The first thing to realise is that unlike MS
Windows or MacOS there is no owner and no
canonical “version” of Linux but rather a sea
of different, often competing, components
(primarily but not exclusively applications) that
can be glued together to create it.

You can do this for yourself but very few people
have the expertise, the time or the motivation to
do it. As a result a number of organisations such
as Ubuntu, Red Hat and Debian have emerged
in order to provide pre-canned component
collections, which are referred to as Linux distros.

The very first set of components required to
build a Linux distro originated from the Free
Software Foundation and is known as the
GNU1 Operating System. The one component
that they were initially unable to develop for
themselves was the operating system kernel, so
they decided to adopt the Linux kernel which
was developed and is still maintained by Linus
Torvalds. The combination of GNU components
and the Linux kernel is referred to as GNU/
Linux – generally shortened to Linux (much to
the chagrin of the Free Software Foundation).

However you will not find a pure “GNU/
Linux” distro because in addition to GNU/
Linux (and in some cases instead of it), many
additional components from other sources
are also included in every Linux distro in order
to make it fit for purpose. For convenience,
components with a common purpose (e.g. a
set of networking utilities or a programming
language toolset) are grouped together into
packages that are installed and managed as a
single entity. The package is therefore the basic
unit of a distro.

Each distro defines a minimum set of packages
that must be installed to make it run at all, along
with a collection of other packages that may be
installed/un-installed at the discretion of the
user. Distro developers define a set of packages
that are installed by default on a new system.
After installation, the user is free to add further
packages, or delete some of the pre-installed
ones, in order to fine tune the system to their
precise requirements.

If you want a Linux distro to run on standard PC
architecture hardware, you have a huge number
of choices including: Ubuntu, Red Hat, Debian,
Mint, SuSE and many more besides. If you want
a Linux distro to run on an embedded hardware
platform that is not PC architecture your choices
have historically been far more limited. These
have generally tended to boil down to whatever
the hardware manufacturers chose to offer on a
‘take it or leave it’ basis. Making changes to the
Linux distro on an embedded system was thus
difficult or impossible for the user and upgrades
were provided as and when the manufacturers
got around to it, if at all. This remains the case
for many devices, particularly IoT devices such as
access points, routers, TVs and set top boxes as
well as mobile devices based on Android (which
has a bare bones Linux distro carefully concealed
under the hood).

A key part of the problem has been the
sheer complexity of creating and maintaining
embedded distros. While many organisations –
including some very large businesses – exist to
do this for PCs, they are only able to do so due
to the relatively limited variety of processors
and hardware architectures on which their
software has to run. In the embedded world,
processors abound, hardware platforms are
legion and mutually incompatible kernel forks
have proliferated, especially on ARM based
hardware. This has historically made it impossible
for “conventional” Linux distros to support them.
Lately, a lot of effort has been put into eliminating

An Introduction to Yocto

1. The name GNU is a recursive acronym that stands for “GNU’s Not Unix”. Who says software developers lack a sense of humour?

the multiple kernel forks and merging them back
into the mainline Linux kernel. However, this is
a very difficult task that has resulted in a lot of
angry outbursts from Linus Torvalds and others
and it remains a work in progress.

Another big problem for the embedded space
is that application packages are written and
maintained by many different groups around the
world, working independently of (and in many
cases in competition with) one another. These
teams have all had a clear common interest
in supporting Linux on x86 processors but,
historically, other processors were much lower
down on, or completely off, their radar. In recent
years, as embedded Linux has become the OS of
choice for various classes of embedded devices,
this situation has improved and most packages
can now be built for a variety of different
processors, particularly ARM architectures which
are now competing head-on with x86 in many
different markets.

Another big problem in this area is how to keep
track of all of the application packages as they are
updated and ensure that they still build and run
correctly on every platform to which they have
been ported. Doing this properly is an enormous
undertaking that strains the resources of even
large organisations.

Numerous attempts have been made to address
these problems by means of toolsets designed
to build embedded distros starting from source
code, ‘Buildroot’ being probably the best known
example. These toolsets use cross-compilers
running under Linux on PC build hosts to
generate the embedded distro code.

Whilst one can debate the pros and cons of these
toolsets (Google is your friend here), they have
historically tended to suffer from a number of
problems:

• The toolsets were difficult to configure and
use and/or limited in their scope.

• Toolset developers typically select a particular
version of each of the underlying packages
and only occasionally update them. This
means that security vulnerabilities and
bugs may remain in the resulting distros for

extended periods even though the package
developers have already fixed them.

• The number of supported packages is often
quite limited (e.g. a few hundred for Buildroot)

• Dependency management is often limited,
so using the tools to build a functional distro
requires quite a lot of knowledge and care on
the part of the user.

• A user who wishes to customise packages in
ways that were not anticipated by the toolset
developers need to directly interact with the
individual packages in order to modify them.
This makes some packages considerably
easier to adapt than others.

• Toolsets typically output complete system
images but do not make the individual
packages available separately. This
means that software update requires the
replacement of the entire system image. This
can be tens of Megabytes, even if only one
byte in one file has actually changed. This
also means that post-installation changes to
configuration files can easily be overwritten
during the update process.

• Toolsets tend to have a single monolithic build
configuration mechanism (e.g. menuconfig in
Buildroot) which defines everything about the
image, so re-use of common configurations in
different projects is difficult.

• The toolsets rely on packages already installed
on the build host (e.g. make, compilers,
linkers etc.) and/or download pre-built cross-
compilation tools from the Internet. This leads
to a configuration control problem where each
individual build host may be using different
versions of tools. The result is that it can
sometimes be difficult or even impossible
to re-create the same target image on two
different build hosts or on a single build host at
different times, even if none of the source code
from which the image is built has changed.

• For a long time there was no clear favourite
build system and processor board
manufacturers chose them seemingly at
random. This created problems for OEMs
wishing to use those boards in their products
because, in the worst case, they would have to
use a different toolset for every board.

The OpenEmbedded /Yocto Project addresses
these issues:

• It is based on a custom-designed toolset
which supports a sophisticated distro build
mechanism based on layered scripts known
as “recipes”. Each package has its own recipe
or set of recipes. Users only need to learn how
to write these recipes.

• Recipe maintenance is delegated to
individuals associated with the teams that
develop the corresponding packages. This
means that Yocto support becomes simply
another aspect of package maintenance for
the corresponding team and all of the details
of building an individual package are taken
care of by someone who already understands
the package.

• Each distro has at least one “image” recipe
that defines which packages are included
in the production image used during
product manufacture along with a set of
tools for creating deployable images in a
variety of formats typically used by product
manufacturing processes. It is also possible
to extend the toolset to use other image
generators if required.

• Everything is a package (including the Linux
kernel) and all packages can be updated after
initial deployment using package managers
such as ‘RPM’ (which is of course itself just
another updateable package).

• Yocto understands how to interact with
version control systems such as Git and SVN
so that it can fetch repositories from the
package developers’ public servers and do
fine grained version control as required.

• Yocto depends on a small number of tools
that are already on the host build system just
to get itself up and running and then compiles
the other tools it needs from source code.
This ensures consistent configuration control
of the toolset used to build the packages as
well as of the packages themselves. The build
tools are themselves managed as packages so
that they are re-built by Yocto in exactly the
same way as the packages that are part of the
distro. This means that their output should

always be reproducible, regardless of the
initial state of the host build system.

• Yocto has a very sophisticated dependency
management/rebuild scheme that can
generally detect automatically when anything
changes and rebuild the affected packages.

• Support from major chip design companies
such as Intel and ARM and board
manufacturers such as Raspberry Pi means
that Yocto is becoming the “obvious” toolset
to choose. As a result, board manufacturers
that do not support it are at increasing risk of
being left behind.

• Individual system developers see Yocto as
something that they should have on their
CVs2.

• There are now several thousand packages/
recipes and many Board Support Packages
(BSPs) ported to Yocto with more being added
all the time.

• Yocto has licence and source code
management mechanisms to help its users
document package usage and avoid licence
infringements.

• Yocto is designed to support the creation of
small packages/images for resource limited
hardware. In fact, the name ‘Yocto’ was
chosen because it is the naming prefix for the
smallest measurement scale (10-24) in the SI
system of units.

What is inside Yocto?
Yocto is essentially a set of tools running on
a Linux build host that build embedded Linux
distros, along with a set of recipes that tell the
tools what to do. Given the right recipes, it
is capable of building distros for: ARM, MIPS,
PowerPC, x86 hardware and PC architectures.
This covers the vast majority of processors that
are capable of running Linux.

The key component is a tool called ‘bitbake’
(note the cookery theme). In essence, bitbake is
a task scheduling tool that understands how to
determine the order in which the build activities
have to happen based on the dependencies
within and between the individual packages.

2. Guilty as charged M’Lud

For instance, you have to build the cross compiler
first and you have to build libraries before you
build the applications that link to them. You can
think of it as ‘Make’ on steroids (but don’t strain
the analogy because it is very different from, and
much more capable, than Make).

Bitbake is a command line tool written in
Python and is extensible by means of Python
“classes” that give it an understanding of
how to perform common build activities (e.g.
downloading package source code from remote
Git repositories).

The recipes for the individual packages are
actually Linux shell scripts (sh rather than bash),
using a large set of variables and functions
provided by bitbake, such as its extension
classes, user configuration files and the recipes
themselves. They understand how to obtain,
configure/adapt and build the source code for
their packages.

Package developers (or Yocto support teams
associated with them) provide the recipes for
building their packages. Distro builders can
append their own recipes that modify/extend or
even replace the base package recipes in order to
customise the package to suit their needs. To this
end recipes are organised into prioritised layers,
where higher priority layers (e.g. those written by
Yocto users) are processed later than (and hence
can modify) the lower priority layers provided
by the package developers. By convention, layer
names start with the string “meta-“, so the layer
for the Raspberry Pi is called meta-rasberrypi, the
layer for web browsers is called meta-browser
and so on.

A very large subset – although by no means all
– of the packages developed for Linux on the PC
have now been ported to Yocto and can be built
for and deployed on any hardware platform that
supports the necessary resources (because of
course your hardware is going to need a display
in order to use a video player package).

In addition to bitbake, Yocto supports a number
of other useful scripts and tools. Of these, the
most interesting is probably Toaster. This adds
a web interface to Yocto, providing a means to
configure and build distros and to visualise key

information about them such as dependencies
between packages.

What is Poky?
Poky is a workspace that contains both the
basic OpenEmbedded toolset (bitbake, Toaster
etc.), the core Linux reference layer (meta-poky)
and a BSP layer (meta-yocto-bsp) which adds
support for a number of common hardware
platforms. It contains the recipes, configuration
files etc. required to build a basic embedded
Linux distro. For historical reasons, one further
layer is required, which does not conform
to the “meta-xxx” naming convention but is
called openembedded-core. This contains core
metadata that is common to all distros.

Other layers allow you to extend the distro by
adding additional applications and board support
packages for specific hardware platforms.

It is possible to create your own distro without
using Poky as the starting point. However, a lot of
wheels have to be re-invented in order to do this.
There are a few layers such as meta-angstrom
that do this for you. There are even layers that
emulate some PC distros such as Debian (called
meta-debian as you might expect); this supports
the same system configuration and packages that
you would get if you installed the corresponding
Debian release (Jessie at the time of writing) on a
PC.

How easy is Yocto to use?
It all depends. Poky provides a small number of
pre-canned image recipes (which define the set
of packages that go into the distro) such as core-
image-minimal. Pointing bitbake to one of these
will build a distro with no further work on the
developer’s part.

The first step beyond this is to write your own
image recipe in order to define precisely the set
of packages that you want in your distro. This
step is fairly easy – you copy one of the pre-
defined image recipes, give it a sensible name
and edit it to change the laundry list of packages
that it includes.

The next step is to add your own packages and/
or to tweak the setups of existing packages
(e.g. by adding platform specific configuration

files). This takes a bit more work because you
have to understand how to write recipes. Yocto
does provide a tool (devtool) for creating new
recipes or modifying existing ones but it may not
always do what you want and you still have to
understand what lives inside a recipe.

By the time you get to this stage, I strongly
recommend you get yourself some proper
training or at least a mentor who knows Yocto.
The Yocto documentation is very useful but, like
most Open Source documentation, it is primarily
for reference and good explanatory material
is thin on the ground. Also, in the end, there’s
nothing quite like talking to somebody who
already knows how to do it.

Conclusion
You might not think it from what I’ve just said, but
in the end there’s no right or wrong answer as to
which toolset one should choose when building
embedded Linux distros. Buildroot has its
advantages over Yocto and other distro generator
toolsets are available. Commercial distro builders
such as Ubuntu are also now taking embedded
devices seriously. If you want an easy life, and
you are free to choose a hardware platform
that supports them (such as the RaspberryPi or
BeagleBone), you can simply take what they give
you. However, for embedded developers who
need fine grained control over what goes onto
their platform, Yocto is the one to beat.

For myself, having used Yocto, Buildroot and
commercial distros, the power and flexibility of
Yocto gives it the edge when it comes to creating
that finely honed product that will take the
market by storm. I commend it to the house.

	FRONT COVER - An Introduction to Yocto
	Yocto

