Home Articles Are there really any benefits to 5G?

Are there really any benefits to 5G?

A visual representation of: Are there really any benefits to 5G
Dr Tom Rouse, Principal Consultant
Written by Dr Tom Rouse

Principal Consultant

Are there really any benefits to 5G?

Is the hype around 5G living up to expectations?

When 5G was announced several years ago there was great fanfare. Proponents of the latest iteration of the technology standard for broadband cellular networks promised revolutionary improvements in capacity, latency and IoT connectivity.

But since widespread rollout, have we seen a connectivity revolution?

The simple answer is no, and the facts speak volumes. A recent survey from online Uswitch reports that less than half of 5G users notice any improvement in speed or reliability, and one in six mobile users feel 5G is ‘overhyped’. The widely reported survey sought the opinions of 2,000 UK-based 5G users, and as well as a degree of disillusionment, the results also revealed a digital divide between urban and rural users. Some 17% of those living outside densely populated urban areas suggest they have never been able to get a 5G connection, despite having a 5G-enabled handset, compared with 6% of those in built-up areas.

The efficacy of the current UK 5G provision

Statistics from 4g.co.uk show that typically 5G only provides 2% of the advertised speeds.

The initial hype may indeed have set unrealistic expectations, for example, the often-quoted 1ms latency capability. To start with, this level only applies to the ultra-reliable low-latency communication (URLLC) mode, not the more common enhanced Mobile BroadBand (eMBB) configuration.

This timing is also for the user plane latency – one way rather than a round trip – and it is only a capability, not a requirement. It fails to manage expectations for the laws of physics when equipment is separated by some distance, which will add at least another 1 millisecond for every 300 km the data travels. So remote surgery may be possible if the patient is not too far away – but will prove tricky on the other side of the planet. The benefit of 5G over 4G is even worse for some IoT configurations, such as NB-IoT (Narrowband Internet of things, a low-power wide-area network radio communication technology standard) and LTE-M (Long-Term Evolution Machine Type Communication, another low-power wide-area network radio communication technology standard), which were originally developed as part of 4G and have been re-badged as 5G.

However, perhaps the biggest problem is that arguably the defining feature of 5G is its flexibility. There are several ways to deploy 5G, from a brand new standalone base station supporting all the features, to a migration using 4G equipment with just an additional 5G air interface connected. A by-product of this is that some phones may display a 5G icon even when connected to a 4G air interface and core network, so the reason 5G is showing no benefit over 4G is that you are still on 4G!

The same flexibility also allows massively simplified base station deployment at reduced cost by distributing the Radio Access Network (RAN), potentially even in the cloud, by only replicating the minimum parts required to transmit and receive the signal and sharing the costly processing resources between many cells. This saves money and balances the load.

This should mean that instead of a complete base station, it is possible to add cells to improve capacity and coverage with smaller, cheaper, less power hungry and simpler hardware.

The near-future benefits that 5G will unlock

Simply put, 5G does potentially offer significant benefits over previous systems, but we are not exploiting them yet.

The massive capacity at mmWave – the band of spectrum with wavelengths between 10 millimetres (30 GHz) and 1 millimetre (300 GHz), which is 20Gbps for a single user, remains untapped. Judging by the comparatively low prices these frequencies are going for at auction, there is currently little operator interest.

Yet, with advanced features such as network slicing and massive Multiple Input Multiple Output (MIMO) antenna arrays, 5G should be able to offer a dazzling array of services, and provide high performance, reliable communications with pop-up infrastructure for disaster relief, for example.

It should also be able to deliver fixed wireless access for rural broadband, meet demand at large sporting events and facilitate private networks with services such as multiple high-definition video streams for live broadcast.

Let’s not forget – despite the rapid evolution of technology – that 5G is still in its infancy. Launched and trialled only three years ago in the UK, we are only just beginning to scratch the surface of 5G’s true potential.

Going back to that USwitch survey, it found that parts of the UK were still struggling for signal based on older generation technology – in Yorkshire, for example, just 48% of residents said they receive a reliable 4G service, and 14% said they often had to use the 1990s-based 2G network.

While many people don’t even yet own a 5G-enabled phone, there are still infrastructure issues holding back the true power of 5G. A great many of the current raft of 5G services on offer are still effectively being delivered by simply bolting 5G radio antennas to the same network infrastructure used for existing 4G services.

The promises of 5G, including ultra-low latency, very high data rates and the ability to support many more devices per cell than with 4G, will only come to fruition with badly needed upgrades to the infrastructure.

These upgrades are time consuming, expensive, and often complex.

So, while the huge operator expenditure required to gradually update infrastructure means mobile broadband may understandably only be seeing an evolutionary improvement, 5G does provide the potential for a revolution which currently needs unlocking – with some imagination and a viable business case.

Contact Plextek

Contact Us

Got a question?

If you have got a question, or even just an idea, get in touch


Technology Platforms

Plextek's 'white-label' technology platforms allow you to accelerate product development, streamline efficiencies, and access our extensive R&D expertise to suit your project needs.

  • 01 Configurable mmWave Radar Module

    Plextek’s PLX-T60 platform enables rapid development and deployment of custom mmWave radar solutions at scale and pace

    Configurable mmWave Radar Module
  • 02 Configurable IoT Framework

    Plextek’s IoT framework enables rapid development and deployment of custom IoT solutions, particularly those requiring extended operation on battery power

    Configurable IoT Framework
  • 03 Ubiquitous Radar

    Plextek's Ubiquitous Radar will detect returns from many directions simultaneously and accurately, differentiating between drones and birds, and even determining the size and type of drone

    Ubiquitous Radar
Enhancing communication and safety in mining: the role of custom RF system design

We explore the role of custom RF system design in communication and safety within the mining industry, ensuring robust data handling and operational efficiency in challenging conditions.

High-Performance mm-Wave Radar System for in-orbit micro-debris detection - capable of detecting fast-moving particles with relative velocities of up to 15.2 km/s at distances over 60 metres away
Continuing to Lead in Radar Development for Pioneering CLEAR Mission

We continue to advance radar technology for the CLEAR mission, reinforcing the partnership with ClearSpace and the UK Space Agency for sustainable space safety and debris removal.

Revolutionising chronic pain management
Revolutionising chronic pain management

Fusing mmWave technology and healthcare innovation to devise a ground-breaking, non-invasive pain management solution, demonstrating our commitment to advancing healthtech.

An artistic impression of the CLEAR mission. © ClearSpace
Pioneering Advanced In-Orbit Servicing

Pioneering a ground-breaking collaboration in advanced in-orbit servicing, setting new benchmarks for space debris removal and satellite maintenance.

A visual representation of: SSL The Revolution Will Not Be Supervised
SSL: The Revolution Will Not Be Supervised

Exploring the cutting-edge possibilities of Self-Supervised Learning (SSL) in machine learning architectures, revealing new potential for automatic feature learning without labelled datasets in niche and under-represented domains.

Unlocking the mysteries of imaging radar data processing

Looking deeper into the cutting edge of imaging radar data processing, where innovative techniques and practical applications combine to drive forward solutions.

Evolving silicon choices in the AI age
Evolving silicon choices in the AI age

How do you choose? We explore the complexities and evolution of processing silicon choices in the AI era, from CPUs and GPUs to the rise of TPUs and NPUs for efficient artificial intelligence model implementation.

A visual representation of: Advancing space technology solutions through innovation
Advancing space technology solutions through innovation

At the forefront of space technology innovation, we address complex engineering challenges in the sector, delivering low size, weight, and power solutions tailored for the harsh environment of space.

A visual representation of: A Programmer's Introduction to Processing Imaging Radar Data
A Programmer’s Introduction to Processing Imaging Radar Data

A practical guide for programmers on processing imaging radar data, featuring example Python code and a detailed exploration of a millimetre-wave radar's data processing pipeline.

Folded Antennas; An Important Point of Clarification

Exploring the essential nuances of folded antennas, ensuring precision and clarity in this critical aspect of RF engineering and design.

Innovation Strategies in Times of Scarcity
Innovation Strategies in Times of Scarcity

In scenarios where scarcity reshapes the business landscape—where customers are limited or prohibited from accessing stores and bars, supply chains are fragmented, and financial instability is rampant—how can innovation move forward?

A visual representation of: Running engineering projects sustainability
Running engineering projects sustainably

Outlining how sustainable practices were integrated into engineering projects, covering all ESG (Environmental, Social, Governance) aspects from reducing economic inequality to combating climate change.


Related Technical Papers

View All
an image of our technical paper
mmWave Imaging Radar

Camera systems are in widespread use as sensors that provide information about the surrounding environment. But this can struggle with image interpretation in complex scenarios. In contrast, mmWave radar technology offers a more straightforward view of the geometry and motion of objects, making it valuable for applications like autonomous vehicles, where radar aids in mapping surroundings and detecting obstacles. Radar’s ability to provide direct 3D location data and motion detection through Doppler effects is advantageous, though traditionally expensive and bulky. Advances in SiGe device integration are producing more compact and cost-effective radar solutions. Plextek aims to develop mm-wave radar prototypes that balance cost, size, weight, power, and real-time data processing for diverse applications, including autonomous vehicles, human-computer interfaces, transport systems, and building security.

an image of our technical paper
Low Cost Millimeter Wave Radio frequency Sensors

This paper presents a range of novel low-cost millimeter-wave radio-frequency sensors that have been developed using the latest advances in commercially available electronic chip-sets. The recent emergence of low-cost, single chip silicon germanium transceiver modules combined with license exempt usage bands is creating a new area in which sensors can be developed. Three example systems using this technology are discussed, including: gas spectroscopy at stand off distances, non-invasive dielectric material characterization and high performance micro radar.

an image of our technical paper
Metamaterial-Based Ku-Band Flat-Panel High-Grain

This technical paper by Dr. Rabbani and his team presents research on metamaterial-based, high-gain, flat-panel antennas for Ku-band satellite communications. The study focuses on leveraging the unique electromagnetic properties of metamaterials to enhance the performance of flat-panel antenna designs, aiming for compact structures with high gain and efficiency. The research outlines the design methodology involving multi-layer metasurfaces and leaky-wave antennas to achieve a compact antenna system with a realised gain greater than +20 dBi and an operational bandwidth of 200 MHz. Simulations results confirm the antenna's high efficiency and performance within the specified Ku-band frequency range. Significant findings include the antenna's potential for application in low-cost satellite communication systems and its capabilities for THz spectrum operations through design modifications. The paper provides a detailed technical roadmap of the design process, supported by diagrams, simulation results, and references to prior work in the field. This paper contributes to the advancement of antenna technology and metamaterial applications in satellite communications, offering valuable insights for researchers and professionals in telecommunications.

an image of our technical paper
The Kootwijk VLF Antenna: A Numerical Model

A comprehensive analysis of the historical Kootwijk VLF (Very Low Frequency, which covers 3-30 kHz) antenna, including the development of a numerical model to gain insight into its operation. The Kootwijk VLF antenna played a significant role in long-range communication during the early 20th century. The paper addresses the challenge of accurately modelling this electrically small antenna due to limited historical technical information and its complex design. The main goal is to understand if the antenna’s radiation efficiency might explain why “results were disappointing” for the Kootwijk to Malabar (Indonesia) communications link. Through simulations and comparisons with historical records, the numerical model reveals that the Kootwijk VLF antenna had a low radiation efficiency – about 8.9% – for such a long-distance link. This work discusses additional loss mechanisms in the antenna system that might not have been considered previously, including increased transmission-line losses as a result of impedance mismatch, wires having a lower effective conductivity than copper and inductor quality factors being lower than expected. The study provides insights into key antenna parameters, such as the radiation pattern, the antenna’s quality factor, half-power bandwidth and effective height, as well as the radiated power level and the power lost through dissipation. This research presents the first documented numerical analysis of the Kootwijk VLF antenna and contributes to a better understanding of its historical performance. While the focus has been at VLF, this work can aid future modelling efforts for electrically small antennas at other frequency bands.

an image of our technical paper
On the Radiation Resistance of Folded Antennas

This technical paper highlights the ambiguity in the antenna technical literature regarding the radiation resistance of folded antennas, such as the half-wave folded dipole (or quarter-wave folded monopole), electrically small self-resonant folded antennas and multiple-tuned antennas. The feed-point impedance of a folded antenna is increased over that of a single-element antenna but does this increase equate to an increase in the antenna’s radiation resistance or does the radiation resistance remain effectively the same and the increase in feed-point impedance is due to transformer action? Through theoretical analysis and numerical simulations, this study shows that the radiation resistance of a folded antenna is effectively the same as its single-element counterpart. This technical paper serves as an important point of clarification in the field of folded antennas. It also showcases Plextek's expertise in antenna theory and technologies. Practitioners in the antenna design field will find valuable information in this paper, contributing to a deeper understanding of folded antennas.

an image of our technical paper
Analysis of Chilton Ionosonde Critical Frequency Measurements During Solar Cycle 23 in the Context of Midlatitude HF NVIS Frequency Predictions

This paper presents a comparison of Chilton ionosonde critical frequency measurements against vertical-incidence HF propagation predictions using ASAPS (Advanced Stand Alone Prediction System) and VOACAP (Voice of America Coverage Analysis Program). This analysis covers the time period from 1996 to 2010 (thereby covering solar cycle 23) and was carried out in the context of UK-centric near-vertical incidence skywave (NVIS) frequency predictions. Measured and predicted monthly median frequencies are compared, as are the upper and lower decile frequencies (10% and 90% respectively). The ASAPS basic MUF predictions generally agree with fxI (in lieu of fxF2) measurements, whereas those for VOACAP appear to be conservative for the Chilton ionosonde, particularly around solar maximum. Below ~4 MHz during winter nights around solar minimum, both ASAPS and VOACAP MUF predictions tend towards foF2, which is contrary to their underlying theory and requires further investigation. While VOACAP has greater errors at solar maximum, those for ASAPS increase at low or negative T-index values. Finally, VOACAP errors might be large when T-SSN exceeds ~15.

an image of our technical paper
Antenna GT Degradation with Inefficient Receive Antenna at HF

This paper presents the antenna G/T degradation incurred when communications systems use very inefficient receive antennas. This work is relevant when considering propagation predictions at HF (2-30 MHz), where it is commonly assumed that antennas are efficient/lossless and external noise dominates over internally generated noise at the receiver. Knowledge of the antenna G/T degradation enables correction of potentially optimistic HF predictions. Simple rules of-thumb are provided to identify scenarios when receive signal-to-noise ratios might be degraded.

an image of our technical paper
Frequency-Scanning Substrate-Integrated-Waveguide Meanderline Antenna for Radar Applications at 60GHz

This paper describes the design and characterization of a frequency-scanning meanderline antenna for operation at 60 GHz. The design incorporates SIW techniques and slot radiating elements. The amplitude profile across the antenna aperture has been weighted to reduce sidelobe levels, which makes the design attractive for radar applications. Measured performance agrees with simulations, and the achieved beam profile and sidelobe levels are better than previously documented frequency-scanning designs at V and W bands.

an image of our technical paper
Comparison of Propagation Predictions and measurements for midlatitude High Frequency

Signal power measurements for a UK-based network of three beacon transmitters and five receiving stations operating on 5.290 MHz were taken over a 23 month period between May 2009 and March 2011, when solar flux levels were low. The median signal levels have been compared with monthly median signal level predictions generated using VOACAP (Voice of America Coverage Analysis Program) and ASAPS (Advanced Stand Alone Prediction System) HF prediction software with the emphasis on the near-vertical incidence sky wave (NVIS) links. Low RMS differences between measurements and predictions for September, October, November, and also March were observed. However, during the spring and summer months (April to August), greater RMS differences were observed that were not well predicted by VOACAP and ASAPS and are attributed to sporadic E and, possibly, deviative absorption influences. Similarly,the measurements showed greater attenuation than was predicted for December, January, and February, consistent with the anomalously high absorption associated with the “winter anomaly.” The summer RMS differences were generally lower for VOACAP than for ASAPS. Conversely, those for ASAPS were lower during the winter for the NVIS links considered in this analysis at the recent low point of the solar cycle. It remains to be seen whether or not these trends in predicted and measured signal levels on 5.290 MHz continue to be observed through the complete solar cycle.

an image of our technical paper
On using the classical monopole for comparison with other electrically small self-resonant monopole antennas of equal height

This paper shows that the Q-factor and VSWR of a monopole are significantly lowered when made resonant by reactive loading (as is used in practice). Comparison with a self-resonant Koch fractal monopole of equal height gives similar values of VSWR and Q-factor. Thus, the various electrically small monopoles (self-resonant and reactively loaded) offer comparable performance when ideal and lossless. However, in selecting the optimum design, conductor losses and mechanical construction at the frequency of interest must be considered. In essence, a trade-off is necessary to obtain an efficient, electrically small antenna suitable for the application in hand.

an image of our technical paper
A Ku-Band, Low Sidelobe Waveguide Array Employing Radiating T Junctions

The design of a 16-element waveguide array employing radiating T-junctions that operates in the Ku band is described. Amplitude weighting results in low elevation sidelobe levels, while impedance matching provides a satisfactory VSWR, that are both achieved over a wide bandwidth (15.7-17.2 GHz). Simulation and measurement results, that agree very well, are presented. The design forms part of a 16 x 40 element waveguide array that achieves high gain and narrow beamwidths for use in an electronic-scanning radar system.

an image of our technical paper
A Wideband, 5-50+GHz Tapered-Slot Antenna For Use in Handheld Test Equipment

A lightweight, wideband tapered-slot antenna that uses an antipodal Vivaldi design and provides useable gain from ~5 GHz to in excess of 50 GHz is described. Simulations and measurements are presented that show excellent agreement. This antenna design is currently deployed in handheld test equipment.