Future mobility, electric cars, inner city congestion

What is the Future of Mobility?

Nicholas Hill, Plextek

By: Nicholas Hill
CEO

13th March 2019

Home » Insights » Industrial

Recently, I found myself on the Shell booth at the MOVE 2019 event in London. The event was all about the future of mobility, so there was an eclectic mix of talks and exhibits on car sharing, electric cars, charging infrastructures, cycling schemes, autonomous taxis, smart parking and the like.

Anyway, I was speaking to a person who was canvassing for opinions on future mobility, and how we might meet our commitments in the Paris Agreement on climate change. She summarised my answer to the latter as “just do it”, as I had suggested making progress was very much about political will and vision, and rather less about enabling technology.

The Problem

The solutions to many of the problems in this space need big, bold, joined up thinking that market forces alone will not deliver. In many cases, the supporting technology needed exists or we know how to create it, such as digital platforms for vehicle sharing or parking management, roadside charging facilities for overnight charging of electric cars, light rail systems, advanced traffic management systems and a low-carbon electricity infrastructure that supports mass charging of electric cars. What is definitely in short supply is the vision to imagine what an effective, efficient and integrated low-carbon transport system would look like in any given city, and the political will (and cash) to encourage its rollout.

It’s always striking to see how easy it is to get around London without a car, given that a bus (with a dedicated lane), tube or DLR train is never more than a few minutes’ walk away. Simply discouraging car use doesn’t seem unreasonable in that environment. In the city where I live, cars clog up almost every main road, and for the most part, public transport alternatives are insufficiently attractive. The train is fine if you are travelling from a distance, but the regular buses and park and ride buses all share the same clogged up roads as the cars. The city is too dense to allow for any meaningful widening of the roads. Indeed bus travel has got worse due to the expansion of cycle lanes, which have eaten into the few short stretches of roadway dedicated to buses. A solution to this is going to require some radical thinking, not tinkering at the edges. Perhaps closing some major roads to through traffic altogether and installing light rail or dedicated bus lanes?

Parking is a nightmare, with many streets clogged with cars circulating, trying to find a parking space that simply doesn’t exist. Simply making parking more and more expensive isn’t fixing this problem. Much of the housing in the city centre comprises narrow streets of terraced houses, with very limited on-street parking. If I lived in one of these houses and wanted to buy an electric car, I’d want to know that there was a charging point close by my house, and that the space next to it wasn’t occupied by a petrol or diesel vehicle.

The Solutions

The push towards autonomous cars is mostly about enabling car sharing or ‘cars on demand’, and as such may have a very positive impact on our street parking issue. However autonomous cars certainly won’t help our rush hour traffic congestion because the same number of people will be in the same number of cars, albeit not in the driving seat. They might even make the situation worse, as people abandon fuel- and traffic-efficient buses and trains for the privacy of a temporarily hired car.

It was interesting, and reassuring, to hear from Shell about their work with other major players on solutions to some of these problems. Listening to a set of partners with sufficient scale and impact to make a difference, the holistic solutions discussed offered to join up electricity generation from renewables, improved electricity distribution and e-car charging systems, and pushed for the use of e-car batteries that are plugged into the network to assist with demand smoothing.

As a technologist, I went to the show looking for examples of how new tech was going to drive us to meet our future mobility needs and climate change goals. For the most part, I came away thinking about the policy, business and market problems that need to be solved first, rather than the technology.

By the way, the most thought-provoking tech at the show was an interesting application of ground penetrating radar (GPR) from WaveSense. Their system builds a reference map of the terrain underneath the roadway, using the GPR returns to map the subsurface features. A vehicle equipped with a GPR can use the sensor and its reference map to provide improved positional accuracy than a standalone GPS, or can assist with location when GPS is degraded in built-up areas. It’s a fascinating example of innovation through technology transfer across markets.

Also worthy of note is system from NIRA Dynamics, which can detect road surface conditions in real-time by using standard telematics equipment. The NIRA solution collects data from a cohort of telematics-enabled vehicles, applying custom fusion algorithms to build up a real-time picture of the roughness and friction of the road surface. The friction maps can be passed back to the vehicles, providing alerts on potential danger areas and reducing the potential for accidents.

These examples may not open the door to the brave new world of future mobility, but both offered real improvements to issues facing us in the here and now.

Recently, I found myself on the Shell booth at the MOVE 2019 event in London. The event was all about the future of mobility, so there was an eclectic mix of talks and exhibits on car sharing, electric cars, charging infrastructures, cycling schemes, autonomous taxis, smart parking and the like.

Anyway, I was speaking to a person who was canvassing for opinions on future mobility, and how we might meet our commitments in the Paris Agreement on climate change. She summarised my answer to the latter as “just do it”, as I had suggested making progress was very much about political will and vision, and rather less about enabling technology.

The solutions to many of the problems in this space need big, bold, joined up thinking that market forces alone will not deliver. In many cases, the supporting technology needed exists or we know how to create it, such as digital platforms for vehicle sharing or parking management, roadside charging facilities for overnight charging of electric cars, light rail systems, advanced traffic management systems and a low-carbon electricity infrastructure that supports mass charging of electric cars. What is definitely in short supply is the vision to imagine what an effective, efficient and integrated low-carbon transport system would look like in any given city, and the political will (and cash) to encourage its rollout.

It’s always striking to see how easy it is to get around London without a car, given that a bus (with a dedicated lane), tube or DLR train is never more than a few minutes’ walk away. Simply discouraging car use doesn’t seem unreasonable in that environment. In the city where I live, cars clog up almost every main road, and for the most part, public transport alternatives are insufficiently attractive. The train is fine if you are travelling from a distance, but the regular buses and park and ride buses all share the same clogged up roads as the cars. The city is too dense to allow for any meaningful widening of the roads. Indeed bus travel has got worse due to the expansion of cycle lanes, which have eaten into the few short stretches of roadway dedicated to buses. A solution to this is going to require some radical thinking, not tinkering at the edges. Perhaps closing some major roads to through traffic altogether and installing light rail or dedicated bus lanes?

Parking is a nightmare, with many streets clogged with cars circulating, trying to find a parking space that simply doesn’t exist. Simply making parking more and more expensive isn’t fixing this problem. Much of the housing in the city centre comprises narrow streets of terraced houses, with very limited on-street parking. If I lived in one of these houses and wanted to buy an electric car, I’d want to know that there was a charging point close by my house, and that the space next to it wasn’t occupied by a petrol or diesel vehicle.

The push towards autonomous cars is mostly about enabling car sharing or ‘cars on demand’, and as such may have a very positive impact on our street parking issue. However autonomous cars certainly won’t help our rush hour traffic congestion because the same number of people will be in the same number of cars, albeit not in the driving seat. They might even make the situation worse, as people abandon fuel- and traffic-efficient buses and trains for the privacy of a temporarily hired car.

It was interesting, and reassuring, to hear from Shell about their work with other major players on solutions to some of these problems. Listening to a set of partners with sufficient scale and impact to make a difference, the holistic solutions discussed offered to join up electricity generation from renewables, improved electricity distribution and e-car charging systems, and pushed for the use of e-car batteries that are plugged into the network to assist with demand smoothing.

As a technologist, I went to the show looking for examples of how new tech was going to drive us to meet our future mobility needs and climate change goals. For the most part, I came away thinking about the policy, business and market problems that need to be solved first, rather than the technology.

By the way, the most thought-provoking tech at the show was an interesting application of ground penetrating radar (GPR) from WaveSense. Their system builds a reference map of the terrain underneath the roadway, using the GPR returns to map the subsurface features. A vehicle equipped with a GPR can use the sensor and its reference map to provide improved positional accuracy than a standalone GPS, or can assist with location when GPS is degraded in built-up areas. It’s a fascinating example of innovation through technology transfer across markets.

Also worthy of note is system from NIRA Dynamics, which can detect road surface conditions in real-time by using standard telematics equipment. The NIRA solution collects data from a cohort of telematics-enabled vehicles, applying custom fusion algorithms to build up a real-time picture of the roughness and friction of the road surface. The friction maps can be passed back to the vehicles, providing alerts on potential danger areas and reducing the potential for accidents.

These examples may not open the door to the brave new world of future mobility, but both offered real improvements to issues facing us in the here and now.

Further Reading

EW BrightSpark, James Henderson One Year On

James Henderson - Consultant, Antennas & Propagation

By: James Henderson
Consultant, Antennas & Propagation

27th February 2019

Home » Insights » Industrial

Following the BrightSparks award ceremony in May last year, most of my work has been on developing an electronically-scanned radar unit operating at mm-wave frequencies, applicable to autonomous ground and air vehicle monitoring and control. This has been a particularly interesting and challenging project as the design has been driven by a demanding requirement to create a small, low power, high performance sensor.

The key area of innovative design that I am particularly proud of is combining two 48-element antenna arrays on to the same PCB as the electronic circuitry. To achieve a low cost, the arrays are realised through a combination of 3D printing and PCB techniques.

This development posed many technical challenges owing to the often conflicting PCB-related requirements of antenna and RF circuitry. However, integration and performance benefits make this approach worthwhile.

System calculations

Initial work on this project required comprehensive system calculations to exactly understand the design requirements. System level planning is informative when determining how to distribute the required tasks.

Often, a number of subsystems could potentially solve the same technical challenge but only when looking at the problem as a whole can you assess how the elements of the system can best work together.

Scanning the radar beam

A key aspect of the design was how to scan the radar beam. In a previous project the antennas were mechanically moved to build up a 3D view of the scene. In contrast the new requirement was to scan the antenna beams electronically, which has many advantages over mechanically scanned systems. Electronic beamforming can be implemented digitally, at the analogue front end, or even within the antennas themselves.

In this design, the scanning mechanism was an integral part of the antenna array, which significantly simplifies other aspects of the system leading to a small sensor having low power consumption. However, this approach required lateral thinking when designing and constructing the PCB to achieve the target performance. For the first iteration of the design the electronics worked as intended, but the antenna performance was lower than expected.

Further investigation revealed the reason for the drop in performance and emphasised the many and varied challenges associated with working at mm-wave frequencies.

Special Interest

The second design iteration gave performance closely matched to my system calculations. This confirmed that the design operated as intended, which was extremely satisfying.

This whole process has exposed me to some particularly interesting design work and has consequently encouraged me to initiate a Special Interest Group within Plextek that specialises in the design and development of mm-wave electronic systems.

Following this project I expect to see substantial interest in operating at mm-wave bands, enhancing the capability of mm-wave circuits and I’m excited to be working with these cutting-edge technologies in the future.

The CEO of Plextek, Nicholas Hill, added:

“BrightSparks is a fantastic way to show your employees’ work is valued. It’s so important to get young people enthusiastic about their engineering careers and award recognition is a great motivational boost. The BrightSparks award last year won by James Henderson was well deserved and he has continued to shape his engineering career by contributing to key company projects here at Plextek.”

Following the BrightSparks award ceremony in May last year, most of my work has been on developing an electronically-scanned radar unit operating at mm-wave frequencies, applicable to autonomous ground and air vehicle monitoring and control. This has been a particularly interesting and challenging project as the design has been driven by a demanding requirement to create a small, low power, high performance sensor.

The key area of innovative design that I am particularly proud of is combining two 48-element antenna arrays on to the same PCB as the electronic circuitry. To achieve a low cost, the arrays are realised through a combination of 3D printing and PCB techniques.

This development posed many technical challenges owing to the often conflicting PCB-related requirements of antenna and RF circuitry. However, integration and performance benefits make this approach worthwhile.

System calculations

Initial work on this project required comprehensive system calculations to exactly understand the design requirements. System level planning is informative when determining how to distribute the required tasks.

Often, a number of subsystems could potentially solve the same technical challenge but only when looking at the problem as a whole can you assess how the elements of the system can best work together.

Scanning the radar beam

A key aspect of the design was how to scan the radar beam. In a previous project the antennas were mechanically moved to build up a 3D view of the scene. In contrast the new requirement was to scan the antenna beams electronically, which has many advantages over mechanically scanned systems. Electronic beamforming can be implemented digitally, at the analogue front end, or even within the antennas themselves.

In this design, the scanning mechanism was an integral part of the antenna array, which significantly simplifies other aspects of the system leading to a small sensor having low power consumption. However, this approach required lateral thinking when designing and constructing the PCB to achieve the target performance. For the first iteration of the design the electronics worked as intended, but the antenna performance was lower than expected.

Further investigation revealed the reason for the drop in performance and emphasised the many and varied challenges associated with working at mm-wave frequencies.

Special Interest

The second design iteration gave performance closely matched to my system calculations. This confirmed that the design operated as intended, which was extremely satisfying.

This whole process has exposed me to some particularly interesting design work and has consequently encouraged me to initiate a Special Interest Group within Plextek that specialises in the design and development of mm-wave electronic systems.

Following this project I expect to see substantial interest in operating at mm-wave bands, enhancing the capability of mm-wave circuits and I’m excited to be working with these cutting-edge technologies in the future.

The CEO of Plextek, Nicholas Hill, added:

“BrightSparks is a fantastic way to show your employees’ work is valued. It’s so important to get young people enthusiastic about their engineering careers and award recognition is a great motivational boost. The BrightSparks award last year won by James Henderson was well deserved and he has continued to shape his engineering career by contributing to key company projects here at Plextek.”

 

 

Further Reading

Principles of Industry 4.0 and the 9 Pillars

Dave Burrel - Senior Consultant, Product Design

By: David Burrell
Senior Consultant, Project Design

7th February 2019

Home » Insights » Industrial

Industry 4.0 (i4.0) refers to the exciting area of automation within manufacturing including IOT, robotics, cloud computing and data management. We can look to the not-very-distant future and see robotics, sensors and integrated systems playing a huge part of a normal manufacturing process. With technologists and engineers regularly discussing topics like the “Smart Factory” and the “4th Industrial Revolution”, David Burrell, Senior Consultant of our Manufacturing Services, discusses what Plextek has been up to in this arena:

“It is interesting to see all the excitement around i4.0 and how we should all be getting involved. But in the end you have to ask yourself, what does it really mean and surely we have been doing this kind of thing for years? In reality, i4.0 is largely the repackaging and combination of capabilities and technologies that already exist; but providing the overall wrapper that enables total interoperability, collecting Big Data, manipulating it and then applying it as positive feedback to improve functionality and efficiency.

“If we look at the 9 pillars of Industry 4.0 below, I have assigned examples to each pillar to show how existing systems, technologies and ideas can be applied to the Industry 4.0 framework:

  1. IOT: IOT gives us the ability to realise Smart Cities: for example, we developed and implemented an intelligent street lighting system and network which can now be enhanced to incorporate collation of environmental data and additional video links.
  2. Big Data: Within the field of vehicle tracking, companies can now manage and interpret Insurance data to enable the interpretation of driver behaviour and accidents.
  3. Cloud Computing: Harvesting large quantities of data involves careful management, and providing a ‘Data warehouse’ facility to organisations is invaluable.
  4. Advanced Simulation: Complex algorithms and testing them allows for projects like inner-city intelligent parking or a ‘Dead reckoning’ capability for GPS denied environments to come to fruition.
  5. Autonomous systems: More systems in business are becoming autonomous and need less human intervention to provide effective results.  We’ve applied this to a transport scenario, with an interesting project recently completed around object and vehicle detection.
  6. Universal Integration: Integrating Factory Test equipment and a bespoke Manufacturing Execution System can enable remote access and feedback into product test yield, improving projections.
  7. Augmented Reality: By creating computer-generated perceptual information it is becoming easier to train your staff, even in unique and difficult conditions. It is very hard for example to provide training scenarios for humanitarian crisis aid or battlefield healthcare without risky in-field training unless you consider AR.
  8. Additive Manufacture: Application of AM techniques to achieve fast market entry and creative solutions is becoming more important in a competitive environment. I have previously written a blog on the 4 steps of Additive Manufacture.
  9. Cyber Security: Security of your infrastructure, both online and offline is a business critical factor. Bespoke systems design will ensure your organisations’ Data Integrity

Having all of these capabilities is all well and good but that is just the beginning, they need to be applied to something in an interconnected way within the manufacturing environment to be counted as Industry 4.0, but that is only an application specific criteria. Industry 4.0 is an exciting area as innovation is combined with sustainable processes.”

For an initial chat about Industry 4.0 and how we can help future-proof your business, then get in touch.

Industry 4.0 (i4.0) refers to the exciting area of automation within manufacturing including IOT, robotics, cloud computing and data management. We can look to the not-very-distant future and see robotics, sensors and integrated systems playing a huge part of a normal manufacturing process. With technologists and engineers regularly discussing topics like the “Smart Factory” and the “4th Industrial Revolution”, David Burrell, Senior Consultant of our Manufacturing Services, discusses what Plextek has been up to in this arena:

“It is interesting to see all the excitement around i4.0 and how we should all be getting involved. But in the end you have to ask yourself, what does it really mean and surely we have been doing this kind of thing for years? In reality, i4.0 is largely the repackaging and combination of capabilities and technologies that already exist; but providing the overall wrapper that enables total interoperability, collecting Big Data, manipulating it and then applying it as positive feedback to improve functionality and efficiency.

“If we look at the 9 pillars of Industry 4.0 below, I have assigned examples to each pillar to show how existing systems, technologies and ideas can be applied to the Industry 4.0 framework:

  1. IOT: IOT gives us the ability to realise Smart Cities: for example, we developed and implemented an intelligent street lighting system and network which can now be enhanced to incorporate collation of environmental data and additional video links.
  2. Big Data: Within the field of vehicle tracking, companies can now manage and interpret Insurance data to enable the interpretation of driver behaviour and accidents.
  3. Cloud Computing: Harvesting large quantities of data involves careful management, and providing a ‘Data warehouse’ facility to organisations is invaluable.
  4. Advanced Simulation: Complex algorithms and testing them allows for projects like inner-city intelligent parking or a ‘Dead reckoning’ capability for GPS denied environments to come to fruition.
  5. Autonomous systems: More systems in business are becoming autonomous and need less human intervention to provide effective results.  We’ve applied this to a transport scenario, with an interesting project recently completed around object and vehicle detection.
  6. Universal Integration: Integrating Factory Test equipment and a bespoke Manufacturing Execution System can enable remote access and feedback into product test yield, improving projections.
  7. Augmented Reality: By creating computer-generated perceptual information it is becoming easier to train your staff, even in unique and difficult conditions. It is very hard for example to provide training scenarios for humanitarian crisis aid or battlefield healthcare without risky in-field training unless you consider AR.
  8. Additive Manufacture: Application of AM techniques to achieve fast market entry and creative solutions is becoming more important in a competitive environment. I have previously written a blog on the 4 steps of Additive Manufacture.
  9. Cyber Security: Security of your infrastructure, both online and offline is a business critical factor. Bespoke systems design will ensure your organisations’ Data Integrity

Having all of these capabilities is all well and good but that is just the beginning, they need to be applied to something in an interconnected way within the manufacturing environment to be counted as being Industry 4.0, but that is only an application specific criteria.

Industry 4.0 is an exciting area as innovation is combined with sustainable processes.  For an initial chat about Industry 4.0 and how we can help future-proof your business, then get in touch.

Further Reading

Being Your User

Nicholas Hill - Chief Executive Officer

By: Nicholas Hill
Chief Executive Officer

19th December 2018

Home » Insights » Industrial

One of the important steps in the Design Council’s recommendations for good design is called “Being Your Users” and is a “Method to put yourself into the position of your user.” Its purpose is “building an understanding of and empathy with the users of your product …” Approaching product design from this perspective is critical to ensuring that the features incorporated are actually beneficial to the user – as opposed to features that are of benefit to the manufacturer, for example, or “because we can” features that have no obvious benefit at all.

It’s clear that domestic appliances are becoming more sophisticated, a trend which is facilitated by the availability of low-cost sensors and processing power. This has some clear benefits, such as the availability of more energy- or water-efficient wash cycles for example. And if designers stay focused on providing something of value to the end user this is a trend to be welcomed.

In practice, I see examples of what looks rather like engineers wondering what else they can do with all this additional sensor data, rather than being driven by user need. One example is the growing size of the error codes table in the back of most appliance manuals. These may occasionally add value, but for the most part, I see them as reasons why the product you paid good money for is refusing to do the job it is supposed to.

Here’s an example: the “smart” washing machine that I own doesn’t like low water pressure. It has a number of error codes associated with this. What does it do if the mains pressure drops temporarily – e.g. if simultaneously a toilet is flushed and the kitchen tap is running? It stops dead, displays the error code and refuses to do anything else until you power off the machine at the wall socket, forcing you to start the wash cycle again from scratch. This gets even more annoying if you’d set the timer and come back to a half-washed load. In the days before “smart” appliances, a temporary pressure drop would have either simply caused the water to fill more slowly, or else the machine would pause until pressure returned.

In what way does this behaviour benefit the user? Clearly, it doesn’t, and a few moments thought from a design team that was focussed on user needs, “being your user”, would have resulted in a different requirement specification being handed to the engineering team. It’s a good example of what happens when you start implementing a solution without properly considering the problem you are trying to solve.

My “intelligent” dishwasher has a different but equally maddening feature: it doesn’t like soft water. Its designers have clearly put water saving above all else, and the machine relies on either hard water or very dirty plates to counteract the natural foaming of the detergent tablets. With soft water, if you try washing lightly soiled dishes on a quick wash cycle (as you might expect appropriate), the machine is unable to rinse off the detergent. About 20 minutes into the cycle it skips to the end and gives up, leaving you with foamy, unrinsed plates.

I say unable, when the machine is actually unwilling, as all that is required is the application of sufficient water to rinse off the detergent – which is what I, as a user, then have to do manually. Who is working for whom here? Once again the user’s needs have not been at the top of the designer’s agenda when the requirement specification was passed to the engineering team. A truly smart device would finish the job properly, using as much water as was needed, and possibly suggest using less detergent next time.

Unless designers get a better grip, keeping the end user experience on the agenda, I fear examples of this type of machine behaviour will proliferate. We will see our devices, appliances and perhaps vehicles develop an increasingly long list of reasons why they can’t (won’t) perform the function you bought them for – because they’re having a bad hair day today, which becomes your problem to solve.

All to a refrain of “I’m sorry Dave, I’m afraid I can’t do that.”

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

One of the important steps in the Design Council’s recommendations for good design is called “Being Your Users” and is a “Method to put yourself into the position of your user.” Its purpose is “building an understanding of and empathy with the users of your product …” Approaching product design from this perspective is critical to ensuring that the features incorporated are actually beneficial to the user – as opposed to features that are of benefit to the manufacturer, for example, or “because we can” features that have no obvious benefit at all.

It’s clear that domestic appliances are becoming more sophisticated, a trend which is facilitated by the availability of low-cost sensors and processing power. This has some clear benefits, such as the availability of more energy- or water-efficient wash cycles for example. And if designers stay focused on providing something of value to the end user this is a trend to be welcomed.

In practice, I see examples of what looks rather like engineers wondering what else they can do with all this additional sensor data, rather than being driven by user need. One example is the growing size of the error codes table in the back of most appliance manuals. These may occasionally add value, but for the most part, I see them as reasons why the product you paid good money for is refusing to do the job it is supposed to.

Here’s an example: the “smart” washing machine that I own doesn’t like low water pressure. It has a number of error codes associated with this. What does it do if the mains pressure drops temporarily – e.g. if simultaneously a toilet is flushed and the kitchen tap is running? It stops dead, displays the error code and refuses to do anything else until you power off the machine at the wall socket, forcing you to start the wash cycle again from scratch. This gets even more annoying if you’d set the timer and come back to a half-washed load. In the days before “smart” appliances, a temporary pressure drop would have either simply caused the water to fill more slowly, or else the machine would pause until pressure returned.

In what way does this behaviour benefit the user? Clearly, it doesn’t, and a few moments thought from a design team that was focussed on user needs, “being your user”, would have resulted in a different requirement specification being handed to the engineering team. It’s a good example of what happens when you start implementing a solution without properly considering the problem you are trying to solve.

My “intelligent” dishwasher has a different but equally maddening feature: it doesn’t like soft water. Its designers have clearly put water saving above all else, and the machine relies on either hard water or very dirty plates to counteract the natural foaming of the detergent tablets. With soft water, if you try washing lightly soiled dishes on a quick wash cycle (as you might expect appropriate), the machine is unable to rinse off the detergent. About 20 minutes into the cycle it skips to the end and gives up, leaving you with foamy, unrinsed plates.

I say unable, when the machine is actually unwilling, as all that is required is the application of sufficient water to rinse off the detergent – which is what I, as a user, then have to do manually. Who is working for whom here? Once again the user’s needs have not been at the top of the designer’s agenda when the requirement specification was passed to the engineering team. A truly smart device would finish the job properly, using as much water as was needed, and possibly suggest using less detergent next time.

Unless designers get a better grip, keeping the end user experience on the agenda, I fear examples of this type of machine behaviour will proliferate. We will see our devices, appliances and perhaps vehicles develop an increasingly long list of reasons why they can’t (won’t) perform the function you bought them for – because they’re having a bad hair day today, which becomes your problem to solve.

All to a refrain of “I’m sorry Dave, I’m afraid I can’t do that.”

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Further Reading

The Importance of Concept Generation

By: Ehsan Abedi
Product Designer, Product Design

28th November 2018

Home » Insights » Industrial

In a modern world, people are often overloaded with information and new products. Effective concept generation allows for the exploration of new ideas that are both novel, commercially successful and of value to the user.

Concept generation is a vital part of the engineering design process. This comes early on in the product design or design engineering process and is essentially a procedure that begins with a range of technical requirements and user considerations. It ends with a multitude of product concept designs.

There were several interactions I had throughout the recent Engineering Design Show which highlighted the importance of concept generation within the modern design process. In a conversation with a manufacturing company based in Hong Kong, they expressed their frustration with receiving part designs which were often incompatible with each other or whole products that are almost impossible to manufacture without significant modification. With better implementation of concept generation and selection, these issues would be less likely to be encountered at such a late stage in the design engineering process, saving companies time and money.

This was further highlighted in Steve May-Russell’s talk on design thinking where he demonstrated that for every 50 concepts there are 10 that successfully meet the whole design brief. Of that 10 it is likely that only 2 would go on to be the successful product.

These interactions clearly indicate the job of a designer is not only to rapidly generate a range of feasible product design concepts but also have the ability to effectively select and develop the best concepts further.

The next time you find yourself tackling a problem ask yourself, “how many alternative ways can I think of solving this issue?” and then think which idea is most effective. It is unlikely to be the first one that popped into your head…

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

In a modern world, people are often overloaded with information and new products. Effective concept generation allows for the exploration of new ideas that are both novel, commercially successful and of value to the user.

Concept generation is a vital part of the engineering design process. This comes early on in the product design or design engineering process and is essentially a procedure that begins with a range of technical requirements and user considerations. It ends with a multitude of product concept designs.

There were several interactions I had throughout the recent Engineering Design Show which highlighted the importance of concept generation within the modern design process. In a conversation with a manufacturing company based in Hong Kong, they expressed their frustration with receiving part designs which were often incompatible with each other or whole products that are almost impossible to manufacture without significant modification. With better implementation of concept generation and selection, these issues would be less likely to be encountered at such a late stage in the design engineering process, saving companies time and money.

This was further highlighted in Steve May-Russell’s talk on design thinking where he demonstrated that for every 50 concepts there are 10 that successfully meet the whole design brief. Of that 10 it is likely that only 2 would go on to be the successful product.

These interactions clearly indicate the job of a designer is not only to rapidly generate a range of feasible product design concepts but also have the ability to effectively select and develop the best concepts further.

The next time you find yourself tackling a problem ask yourself, “how many alternative ways can I think of solving this issue?” and then think which idea is most effective. It is unlikely to be the first one that popped into your head…

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Further Reading