Coronavirus, people wearing masks, treatment and prevention

The Coronavirus Epidemic – How Worried Should We Be?

By: Dr Nigel Whittle
Head of Medical & Healthcare

31st January 2020

4 minute read

Home » Insights » Life Science

The current epidemic results from infection by a coronavirus, one of a family of viruses that infect the nose, sinuses, or upper throat. Infection causes illnesses that range from the common cold to pneumonia and severe acute respiratory syndrome (SARS). The virus is named after its characteristic shape, which under an electron microscope looks like a royal crown with bulbous protrusions around it.1

Most such viruses are not dangerous. However, in early January 2020 the WHO identified a previously unknown type: 2019 novel coronavirus (2019-nCoV), a new strain not previously seen in humans. The first human cases had in fact been identified in the Chinese city of Wuhan in December 2019, before the cause was known. Initial symptoms of the viral infection included a fever, cough and difficulty in breathing, but in more severe cases the infection led to pneumonia, kidney failure and death.

By mid-January there were over 300 confirmed cases in China and a death count that was in the single digits but rising steadily. Many of those initially infected either worked or shopped in a large market in central Wuhan, which also sold live and newly slaughtered animals, leading to the assumption that the virus had jumped species, a not uncommon phenomenon. Interestingly, a genetically similar viral strain had been identified in a local breed of bats a few years’ previously, suggesting that the virus has jumped at least two species.

Spread of the virus

It is now clear that the virus is capable of person-to-person spreading. Scientists at Imperial College recently estimated that about 100,000 people around the world may already be infected with the new coronavirus and that each infected patient can infect on average 2.6 others – about the same rate as in annual influenza outbreaks. Worryingly there is concern that the coronavirus can be passed on during the disease’s incubation period, which means that someone who is ill but not yet displaying any symptoms could transmit the infection. A current count of more than 100 deaths out of 6,000 reported cases implies a 1.7% mortality rate, compared with seasonal influenza (which causes about 400,000 deaths each year globally) with a mortality rate well below 1%.

First lines of defence

One of the first lines of defence is monitoring airline passengers flying in from areas where the virus is active, often using thermal imaging cameras to detect fever, in an attempt to identify people who have symptoms. The problem is that only those who are already ill will be picked up, although it is thought that the incubation period (how long it takes for symptoms to appear after catching the infection) is days, rather than weeks. More draconian measures such as those instigated by China to effectively quarantine 10’s of millions of people may help to slow the progress of the disease but may not be enough to stop the virus spreading.

Surgical masks to slow the spread?

One of the defining images of large respiratory disease outbreaks is people wearing surgical masks in the street, and this one is no different, most notably in China where they are also worn to protect against pollution. Many other cities in Asia are already reporting masks flying from the shelves, leading to shortages in the shops. But do these masks offer any protection for the wearer? The coronavirus is spread by droplets in the air produced when an infected individual coughs or sneezes, but it is also spread by touching a contaminated surface and then touching the mouth, nose, or eyes. This means that it is more likely for a person to become infected if they in close continuous contact with someone who is infected rather than a casual interaction on the street. In reality, the thin material in masks does little to stop respiratory viruses spreading, and masks have to be worn correctly, changed frequently and disposed of safely in order to work properly. There is however some limited evidence that suggests masks can help prevent hand-to-mouth transmissions.

Treatment and prevention

As this is a viral disease, antibiotics are not an effective treatment, and standard anti-viral drugs used against influenza will not work. So far, recovery has been very dependent on the strength of patients’ immune systems, and many of those who died are known to have suffered from poor health. Unlike influenza, there is no currently available vaccine, which means it is more difficult to protect vulnerable members of the population. How long will it take to develop an effective vaccine? The US NIH has suggested that a vaccine might be available for testing in humans in about 3 months, which represents an unprecedented speed of development. This has been enabled by technology for rapid genetic analysis of the virus, and prompt action by governments to begin a vaccine development programme.

So what can we do to avoid infection?

To minimize the effects of any respiratory illness, from the common cold to 2019-nCoV, doctors recommend the following precautions:

  • Wash your hands regularly with soap and water for at least 20 seconds, or use an alcohol-based hand sanitiser.
  • Avoid touching your eyes, nose, and mouth with unwashed hands.
  • Try to avoid close contact with people who are sick, and stay home when you are sick.

Much like SARS in 2003 and MERS in 2012, the current coronavirus outbreak has caught local and global health systems by surprise, but it remains to be seen what the final impact of the epidemic will be on the world’s population.

1 For those interested, coronaviruses are enveloped viruses with a single-stranded positive-sense RNA genome, ranging in size from approximately 26 to 32 kilobases, tiny for a living cell but the largest for an RNA virus. The appearance results from the presence of viral spikes which are proteins that determine the virus hoist specificity, and are potentially good targets for vaccine.

The current epidemic results from infection by a coronavirus, one of a family of viruses that infect the nose, sinuses, or upper throat. Infection causes illnesses that range from the common cold to pneumonia and severe acute respiratory syndrome (SARS). The virus is named after its characteristic shape, which under an electron microscope looks like a royal crown with bulbous protrusions around it.1

Most such viruses are not dangerous. However, in early January 2020 the WHO identified a previously unknown type: 2019 novel coronavirus (2019-nCoV), a new strain not previously seen in humans. The first human cases had in fact been identified in the Chinese city of Wuhan in December 2019, before the cause was known. Initial symptoms of the viral infection included a fever, cough and difficulty in breathing, but in more severe cases the infection led to pneumonia, kidney failure and death.

By mid-January there were over 300 confirmed cases in China and a death count that was in the single digits but rising steadily. Many of those initially infected either worked or shopped in a large market in central Wuhan, which also sold live and newly slaughtered animals, leading to the assumption that the virus had jumped species, a not uncommon phenomenon. Interestingly, a genetically similar viral strain had been identified in a local breed of bats a few years’ previously, suggesting that the virus has jumped at least two species.

Spread of the virus

It is now clear that the virus is capable of person-to-person spreading. Scientists at Imperial College recently estimated that about 100,000 people around the world may already be infected with the new coronavirus and that each infected patient can infect on average 2.6 others – about the same rate as in annual influenza outbreaks. Worryingly there is concern that the coronavirus can be passed on during the disease’s incubation period, which means that someone who is ill but not yet displaying any symptoms could transmit the infection. A current count of more than 100 deaths out of 6,000 reported cases implies a 1.7% mortality rate, compared with seasonal influenza (which causes about 400,000 deaths each year globally) with a mortality rate well below 1%.

First lines of defence

One of the first lines of defence is monitoring airline passengers flying in from areas where the virus is active, often using thermal imaging cameras to detect fever, in an attempt to identify people who have symptoms. The problem is that only those who are already ill will be picked up, although it is thought that the incubation period (how long it takes for symptoms to appear after catching the infection) is days, rather than weeks. More draconian measures such as those instigated by China to effectively quarantine 10’s of millions of people may help to slow the progress of the disease but may not be enough to stop the virus spreading.

Surgical masks to slow the spread?

One of the defining images of large respiratory disease outbreaks is people wearing surgical masks in the street, and this one is no different, most notably in China where they are also worn to protect against pollution. Many other cities in Asia are already reporting masks flying from the shelves, leading to shortages in the shops. But do these masks offer any protection for the wearer? The coronavirus is spread by droplets in the air produced when an infected individual coughs or sneezes, but it is also spread by touching a contaminated surface and then touching the mouth, nose, or eyes. This means that it is more likely for a person to become infected if they in close continuous contact with someone who is infected rather than a casual interaction on the street. In reality, the thin material in masks does little to stop respiratory viruses spreading, and masks have to be worn correctly, changed frequently and disposed of safely in order to work properly. There is however some limited evidence that suggests masks can help prevent hand-to-mouth transmissions.

Treatment and prevention

As this is a viral disease, antibiotics are not an effective treatment, and standard anti-viral drugs used against influenza will not work. So far, recovery has been very dependent on the strength of patients’ immune systems, and many of those who died are known to have suffered from poor health. Unlike influenza, there is no currently available vaccine, which means it is more difficult to protect vulnerable members of the population. How long will it take to develop an effective vaccine? The US NIH has suggested that a vaccine might be available for testing in humans in about 3 months, which represents an unprecedented speed of development. This has been enabled by technology for rapid genetic analysis of the virus, and prompt action by governments to begin a vaccine development programme.

So what can we do to avoid infection?

To minimize the effects of any respiratory illness, from the common cold to 2019-nCoV, doctors recommend the following precautions:

  • Wash your hands regularly with soap and water for at least 20 seconds, or use an alcohol-based hand sanitiser.
  • Avoid touching your eyes, nose, and mouth with unwashed hands.
  • Try to avoid close contact with people who are sick, and stay home when you are sick.

Much like SARS in 2003 and MERS in 2012, the current coronavirus outbreak has caught local and global health systems by surprise, but it remains to be seen what the final impact of the epidemic will be on the world’s population.

1 For those interested, coronaviruses are enveloped viruses with a single-stranded positive-sense RNA genome, ranging in size from approximately 26 to 32 kilobases, tiny for a living cell but the largest for an RNA virus. The appearance results from the presence of viral spikes which are proteins that determine the virus hoist specificity, and are potentially good targets for vaccine.

Plextek’s Annual Make-a-thon

Thomas Rouse - Senior Consultant, Medical & Healthcare

By: Thomas Rouse
Lead Consultant

24th October 2019

4 minute read

Home » Insights » Life Science

Thomas Rouse explains what a make-a-thon is and why it’s important for innovation.

What is a Make-a-thon? Well for us it’s a more constructive version of a hackathon, both literally and metaphorically. Plextek’s annual Make-a-thon is a chance for graduates through to senior consultants to work in teams to make amazing creations in a day. Why is this important? As a company grows, activities like Make-a-thons can test our normal working practices, help us to focus on the essentials, evaluate what it means to be innovative and just have fun with our colleagues using lots of cool tools.

The Results:

Team Green UI (Richard Emmerson, Steve Fitz, Ben Skinner and Ivan Saunders) have developed a novel user interface that can tell users the weather using a visual dome display that mechanically points to different weather states: rain, snow, mist, fog, sun, day, night – also a lot more energy efficient than displaying on a screen. Interesting to see what you can do away from traditional display technology using energy-efficient methods.

Team Infant Suffocation ( Polly Britton, Daniel Tomlinson, Alan Cucknell, Edson Silva) have developed a proof of concept for new parents with infants. Monitoring the fluctuation of the infant’s chest (using a soft flexible strap) while breathing, the device would alert the parent if the infant’s breathing became irregular. Measuring the voltage across an electrically conductive material to monitor the breathing, the material’s resistance would change according to the pressure created by the force of an inhale/exhale. A low cost, low power solution that democratises baby safety.

Engineers

Team Posture Detection (Ehsan Abedi, Thomas Childs, Bhavin Patel, Gifty Mbroh) looked at developing a proof of concept that could take readings across a number of different points across the back to detect and alert the user to incorrect posture. A novel use of accelerometers that looks to address the health issues of bad posture, either from sitting or standing, for prolonged periods of time.

Team Microfluidics (Kieran Bhuiyan, Frederick Saunders, Poppy Oldroyd) aimed to demonstrate whether low-cost microfluidic systems can be made using rapid prototyping. A microfluidic channel was made in acrylic and various concentrations of saltwater were supplied to these channels. Measuring the rate of flow demonstrated that geometrically consistent channels could be made using rapid prototyping. The results of which proved that solutions with a higher salinity did indeed have a higher viscosity.

Team Autism EEG (Tom Rouse, Josip Rožman, Glenn Wilkinson, Elliot Langran) have developed a proof of concept system using real-time neurofeedback and a traffic light wristband. The idea is to assist autistic children in identifying emotions, as many have difficulty with this. Brainwaves measured using low-cost EEG sensors and a Raspberry Pi running a Multilayer perceptron (MLP) determined whether Elliot was calm or stressed and gave near-instant feedback. The model had been trained on the day especially for him, based on two 5 minute measurements while he was experiencing different emotions. The device can, therefore, be personalised to both the individual and the concepts they would like to understand.

This year’s make-a-thon was run our Summer student Poppy and myself. Many thanks Poppy!

As you can see, giving a short timeframe can focus the mind to create amazing solutions that otherwise could take longer. Lean working can create innovation where you least expect it!

If you have any questions about any of the projects and would like to know more about any of our projects in the make-a-thon, do get in touch – I’d love to hear from you!

Thomas Rouse explains what a make-a-thon is and why it’s important for innovation.

What is a Make-a-thon? Well for us it’s a more constructive version of a hackathon, both literally and metaphorically. Plextek’s annual Make-a-thon is a chance for graduates through to senior consultants to work in teams to make amazing creations in a day. Why is this important? As a company grows, activities like Make-a-thons can test our normal working practices, help us to focus on the essentials, evaluate what it means to be innovative and just have fun with our colleagues using lots of cool tools.

The Results:

Team Green UI (Richard Emmerson, Steve Fitz, Ben Skinner and Ivan Saunders) have developed a novel user interface that can tell users the weather using a visual dome display that mechanically points to different weather states: rain, snow, mist, fog, sun, day, night – also a lot more energy efficient than displaying on a screen. Interesting to see what you can do away from traditional display technology using energy-efficient methods.

Team Infant Suffocation ( Polly Britton, Daniel Tomlinson, Alan Cucknell, Edson Silva) have developed a proof of concept for new parents with infants. Monitoring the fluctuation of the infant’s chest (using a soft flexible strap) while breathing, the device would alert the parent if the infant’s breathing became irregular. Measuring the voltage across an electrically conductive material to monitor the breathing, the material’s resistance would change according to the pressure created by the force of an inhale/exhale. A low cost, low power solution that democratises baby safety.

Team Posture Detection (Ehsan Abedi, Thomas Childs, Bhavin Patel, Gifty Mbroh) looked at developing a proof of concept that could take readings across a number of different points across the back to detect and alert the user to incorrect posture. A novel use of accelerometers that looks to address the health issues of bad posture, either from sitting or standing, for prolonged periods of time.

Team Microfluidics (Kieran Bhuiyan, Frederick Saunders, Poppy Oldroyd) aimed to demonstrate whether low-cost microfluidic systems can be made using rapid prototyping. A microfluidic channel was made in acrylic and various concentrations of saltwater were supplied to these channels. Measuring the rate of flow demonstrated that geometrically consistent channels could be made using rapid prototyping. The results of which proved that solutions with a higher salinity did indeed have a higher viscosity.

Team Autism EEG (Tom Rouse, Josip Rožman, Glenn Wilkinson, Elliot Langran) have developed a proof of concept system using real-time neurofeedback and a traffic light wristband. The idea is to assist autistic children in identifying emotions, as many have difficulty with this. Brainwaves measured using low-cost EEG sensors and a Raspberry Pi running a Multilayer perceptron (MLP) determined whether Elliot was calm or stressed and gave near-instant feedback. The model had been trained on the day especially for him, based on two 5 minute measurements while he was experiencing different emotions. The device can, therefore, be personalised to both the individual and the concepts they would like to understand.

This year’s make-a-thon was run our Summer student Poppy and myself. Many thanks Poppy!

As you can see, giving a short timeframe can focus the mind to create amazing solutions that otherwise could take longer. Lean working can create innovation where you least expect it!

If you have any questions about any of the projects and would like to know more about any of our projects in the make-a-thon, do get in touch – I’d love to hear from you!

Advanced Technologies in Healthcare

Nigel Whittle - Head of Medical & Healthcare

By: Nigel Whittle
Head of Medical & Healthcare

21st March 2019

4 minute read

Home » Insights » Life Science

Some of the biggest changes in the practice of medicine and healthcare over the past 70 years have resulted from improvements in the way diseases and illnesses can be diagnosed and studied. Innovative technologies now allow doctors to discover increasing amounts of detailed information about both the progression and treatment of disease, allowing new treatment options and care pathways.

The most significant developments which are likely to change the face of medicine over the next few decades include:

  • Enhanced self-management for patients and the elderly through technology support systems to empower understanding and control of conditions.
  • Improved patient access to health service infrastructure through utilisation of remote care and monitoring systems.
  • Further developments in medical imaging and the application of Artificial Intelligence systems to effectively analyse and diagnose conditions.
  • Precision medicine that can target medical interventions to specific sub-groups of patients based on genomic data.
  • Robotic surgical systems that can conduct exquisitely precise operations in difficult-to-reach anatomical areas without flagging or losing concentration.

Self-Management for Patients

Day-to-day physiological monitoring technology, driven particularly by the spread of a variety of consumer wearable devices with communication capabilities, has the ability to collect and integrate health information from a variety of sources, both medical and consumer-based. The next generation of wearables is likely to significantly blur the division between technology lifestyle accessory and medical device, as reliable non-invasive sensors for the measurement of blood pressure, blood sugar, body temperature, pulse rate, hydration level and many more become increasingly implemented within these devices. The provision and integration of these derived complex sets of data has the potential to provide valuable information, that enabling a holistic approach to healthcare. The US FDA is currently working closely with industry to facilitate the introduction and effective use of these more advanced devices.

Enhanced Patient Access

In the UK, the NHS has brought high-quality medical services to every citizen, but often at the cost of long waits for visits to the doctor when a patient is concerned about his health. The introduction of improved access systems, including video-conferencing facilities, electronic health records and AI-powered chatbots, promises to be a powerful and game-changing move. In particular, chatbots systems such as Babylon Health or Ada can provide a highly accessible medical triage procedure, which can alleviate the pressure on over-worked doctors in GP surgeries, and allow those doctors to focus on patients with more serious conditions. With increasing sophistication, these chatbots can potentially provide accurate diagnostic advice on common ailments without any human interaction or involvement. The key concern is, of course, ensuring that the algorithms operate with patient safety foremost, which requires fine tuning to balance between over-caution and under diagnosis.

Medical Imaging and Artificial Intelligence

Following admission to a hospital, a key element of modern medicine is the use of imaging systems for clinical diagnosis, and the main challenge for doctors is to interpret the complexity and dynamic changes of these images. Currently, most interpretations are performed by human experts, which can be time-consuming, expensive and suffer from human error due to visual fatigue. Recent advances in machine learning systems have demonstrated that computers can extract richer information from images, with a corresponding increase in reliability and accuracy. Eventually, Artificial Intelligence will be able to identify and extract novel features that are not discernible to human viewers, allowing enhanced capabilities for medical intervention. This will allow doctors to re-focus on their interaction with patients, which is often cited as the most valued aspect of medical intervention.

Precision Medicine

The current paradigm for medical treatment is changing through the development of powerful new tools for genome sequencing which allows scientists to understand how genes affect human health. Medical decisions can now take account of genetic information, allowing doctors to tailor specific treatments and prevention strategies for individual patients.

In essence, precision medicine is able to classify patients into sub-populations that are likely to differ in their response to a specific treatment. Therapeutic interventions can then be concentrated on those who will benefit, sparing expense and often unpleasant side effects for those who will not.

Robotic Surgery

Currently, robotic surgical devices are simply instruments that can translate actions outside the patient to inside the patient, often working through incisions as small as 8mm. The benefits of this are clear in terms of minimally invasive surgery, and by allowing surgeons to conduct the operations in a relaxed and stress-free environment. At the moment the robot does not do anything without direct input, but with the increasing development of AI systems, it is likely that in 10 or 15 years, certain parts of an operation such as suturing may be performed automatically by a robot, albeit under close supervision.

What will new technology mean for healthcare?

It is fiendishly difficult to predict the impact of innovative technological advances on medical practice and patient care. However, the overall message is clear – improvements in front end technology will allow patients to have a greater responsibility for their own personal health and well-being. Increased access to medical practice through innovative and efficient mechanisms will allow doctors to focus their time on the patients identified as suffering from more serious illnesses. Highly trained AI systems can then complement the doctors’ prowess in identifying and diagnosing particular diseases. Finally, treatment options will be highly tailored to individual patients and their conditions, increasing the cost-effectiveness of treatment.

However, each of these technology developments comes with associated costs and challenges. Not least, new technology could fundamentally change the way that medical staff work, requiring new skills and mindsets to effectively transform medical care into a radically new approach.

For an informative chat on how Plextek can assist with your Healthcare technology project, please contact Nigel at healthcare@plextek.com

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Some of the biggest changes in the practice of medicine and healthcare over the past 70 years have resulted from improvements in the way diseases and illnesses can be diagnosed and studied. Innovative technologies now allow doctors to discover increasing amounts of detailed information about both the progression and treatment of disease, allowing new treatment options and care pathways.

The most significant developments which are likely to change the face of medicine over the next few decades include:

  • Enhanced self-management for patients and the elderly through technology support systems to empower understanding and control of conditions.
  • Improved patient access to health service infrastructure through utilisation of remote care and monitoring systems.
  • Further developments in medical imaging and the application of Artificial Intelligence systems to effectively analyse and diagnose conditions.
  • Precision medicine that can target medical interventions to specific sub-groups of patients based on genomic data.
  • Robotic surgical systems that can conduct exquisitely precise operations in difficult-to-reach anatomical areas without flagging or losing concentration.

Self-Management for Patients

Day-to-day physiological monitoring technology, driven particularly by the spread of a variety of consumer wearable devices with communication capabilities, has the ability to collect and integrate health information from a variety of sources, both medical and consumer-based. The next generation of wearables is likely to significantly blur the division between technology lifestyle accessory and medical device, as reliable non-invasive sensors for the measurement of blood pressure, blood sugar, body temperature, pulse rate, hydration level and many more become increasingly implemented within these devices. The provision and integration of these derived complex sets of data has the potential to provide valuable information, that enabling a holistic approach to healthcare. The US FDA is currently working closely with industry to facilitate the introduction and effective use of these more advanced devices.

Enhanced Patient Access

In the UK, the NHS has brought high-quality medical services to every citizen, but often at the cost of long waits for visits to the doctor when a patient is concerned about his health. The introduction of improved access systems, including video-conferencing facilities, electronic health records and AI-powered chatbots, promises to be a powerful and game-changing move. In particular, chatbots systems such as Babylon Health or Ada can provide a highly accessible medical triage procedure, which can alleviate the pressure on over-worked doctors in GP surgeries, and allow those doctors to focus on patients with more serious conditions. With increasing sophistication, these chatbots can potentially provide accurate diagnostic advice on common ailments without any human interaction or involvement. The key concern is, of course, ensuring that the algorithms operate with patient safety foremost, which requires fine tuning to balance between over-caution and under diagnosis.

Medical Imaging and Artificial Intelligence

Following admission to a hospital, a key element of modern medicine is the use of imaging systems for clinical diagnosis, and the main challenge for doctors is to interpret the complexity and dynamic changes of these images. Currently, most interpretations are performed by human experts, which can be time-consuming, expensive and suffer from human error due to visual fatigue. Recent advances in machine learning systems have demonstrated that computers can extract richer information from images, with a corresponding increase in reliability and accuracy. Eventually, Artificial Intelligence will be able to identify and extract novel features that are not discernible to human viewers, allowing enhanced capabilities for medical intervention. This will allow doctors to re-focus on their interaction with patients, which is often cited as the most valued aspect of medical intervention.

Precision Medicine

The current paradigm for medical treatment is changing through the development of powerful new tools for genome sequencing which allows scientists to understand how genes affect human health. Medical decisions can now take account of genetic information, allowing doctors to tailor specific treatments and prevention strategies for individual patients.
In essence, precision medicine is able to classify patients into sub-populations that are likely to differ in their response to a specific treatment. Therapeutic interventions can then be concentrated on those who will benefit, sparing expense and often unpleasant side effects for those who will not.

Robotic Surgery

Currently, robotic surgical devices are simply instruments that can translate actions outside the patient to inside the patient, often working through incisions as small as 8mm. The benefits of this are clear in terms of minimally invasive surgery, and by allowing surgeons to conduct the operations in a relaxed and stress-free environment. At the moment the robot does not do anything without direct input, but with the increasing development of AI systems, it is likely that in 10 or 15 years, certain parts of an operation such as suturing may be performed automatically by a robot, albeit under close supervision.

What will new technology mean for healthcare?

It is fiendishly difficult to predict the impact of innovative technological advances on medical practice and patient care. However, the overall message is clear – improvements in front end technology will allow patients to have a greater responsibility for their own personal health and well-being. Increased access to medical practice through innovative and efficient mechanisms will allow doctors to focus their time on the patients identified as suffering from more serious illnesses. Highly trained AI systems can then complement the doctors’ prowess in identifying and diagnosing particular diseases. Finally, treatment options will be highly tailored to individual patients and their conditions, increasing the cost-effectiveness of treatment.
However, each of these technology developments comes with associated costs and challenges. Not least, new technology could fundamentally change the way that medical staff work, requiring new skills and mindsets to effectively transform medical care into a radically new approach.

For an informative chat on how Plextek can assist with your Healthcare technology project, please contact Nigel at healthcare@plextek.com

Save

Save

Save

Save

Save

Save

Save

Save

Save

The New Science of Genetic Medicine

Nigel Whittle - Head of Medical & Healthcare

By: Nigel Whittle
Head of Medical & Healthcare

9th January 2019

Home » Insights » Life Science

With surprisingly little fanfare, in October 2018 NHS England became the first health service in the world to routinely offer genetic medicine in the fight to treat cancer.

From that date, hospitals across England have been linked to specialist centres that can read, analyse and interpret DNA isolated from patients with cancer. Through this service, cancer patients can be screened for the existence of key mutations within their tumours that can indicate the best drugs for treatment or to point towards clinical trials of experimental therapies that may be beneficial.

The move marks a big step towardprecision medicine, which offers more effective therapies that are tailored to individual patients.

What is the science underpinning this move?

Firstly, a quick crash course in cancer biology:

  • Cells are the building blocks of every living organism.The instructions (or genes) that tell a cell how to develop and what to do are encoded in long linear molecules of DNA found in the nucleus of the cell.
  • These DNA molecules can be damaged over time or through exposure to chemicals or environmental changes. Cells become cancerous when specific changes in the DNA, called ‘driver mutations’, tell cells to grow faster and behave abnormally.
  • Many cancers form solid tumours, which are masses of tissue, while cancers of the blood, such as leukaemia, generally do not form solid tumours.
  • As these cancer cells multiply to form a tumour, selective pressure increases the number and type of harmful mutations found within the DNA.
  • The cells may acquire additional properties through mutation, such as malignancy which means that they can spread into, or invade nearby tissues. In addition, as these tumours grow, some cancer cells break off and travel to distant parts of the body and form new tumours far from the original site.

Accordingly, although every cell of a particular cancer is related to the same original “parent” cell, the mixture of cells within a tumour becomes increasingly complex. The idea that different kinds of cells make up one cancer is called “tumour heterogeneity”, and in practice means that every cancer is unique. So two people with, say, lung cancer who are the same age, height, weight, and ethnicity, and who have similar medical histories, will almost certainly have two very different cancers.

By the time a cancer tumour is 1cm in diameter, the millions of cells within it are very different from each other, and each cancer has its own genetic identity created by the DNA in its cells.

This, of course, makes the treatment of cancer incredibly difficult and explains why scientific breakthroughs in the understanding of cancer biology do not always lead to significant improvements in overall survival rates.

How will cancer treatment change?

Precision medicine is an approach to patient care that allows doctors to select the best treatments for patients based on a genetic understanding of their disease. The idea of precision medicine is not new, but recent advances in science and technology have allowed the ideas to be brought more fully into clinical use.

Normally, when a patient is diagnosed with cancer, he or she receives a standard treatment based on previous experience of treating that disease. But typically, different people respond to treatments differently, and until recently doctors didn’t know why. But now the understanding that the genetic changes within one person’s cancer may not occur in others with the same type of cancer has led to a better understanding of which treatments will be most effective.

At the simplest level, this understanding allows targeted therapy against cancer, in which drugs (quite often complex biological molecules) are used to target very specific genetic changes in cancer cells. For example, around 15–20% of malignant breast cancers contain cells with a higher than normal level of a protein called HER2 on their surface, which stimulates them to grow. When combined with a suitable test, it means that not only can the drug be given to those patients most likely to benefit, but also the drug, with its associated side effects, need not be given to patients who will not benefit from its use.

So genetic medicine has already transformed the treatment of some cancer patients. The advent of widespread genetic medicine within the NHS is likely to lead to significant benefits for cancer patients, including:

• The identification of patients who are most likely to benefit from particular cancer therapy.

• The avoidance of unnecessary treatments that are less likely to work for specific groups of patients.

• The development of novel therapies targeted at specific tumour cells or cellular pathways.

Not only will precision medicine allow the development of precise and effective treatment strategies for cancer patients whilst improving the overall quality of life, but it will also finally destroy the myth of ‘one size fits all’ cancer therapy.

For an informative chat on how Plextek can assist with your Healthcare technology project, please contact Nigel at healthcare@plextek.com

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save


With surprisingly little fanfare, in October 2018 NHS England became the first health service in the world to routinely offer genetic medicine in the fight to treat cancer.

From that date, hospitals across England have been linked to specialist centres that can read, analyse and interpret DNA isolated from patients with cancer. Through this service, cancer patients can be screened for the existence of key mutations within their tumours that can indicate the best drugs for treatment or to point towards clinical trials of experimental therapies that may be beneficial.

The move marks a big step towardprecision medicine, which offers more effective therapies that are tailored to individual patients.

What is the science underpinning this move?


Firstly, a quick crash course in cancer biology:

  • Cells are the building blocks of every living organism. The instructions (or genes) that tell a cell how to develop and what to do are encoded in long linear molecules of DNA found in the nucleus of the cell.
  • These DNA molecules can be damaged over time or through exposure to chemicals or environmental changes. Cells become cancerous when specific changes in the DNA, called ‘driver mutations’, tell cells to grow faster and behave abnormally.
  • Many cancers form solid tumours, which are masses of tissue, while cancers of the blood, such as leukaemia, generally do not form solid tumours.
  • As these cancer cells multiply to form a tumour, selective pressure increases the number and type of harmful mutations found within the DNA.
  • The cells may acquire additional properties through mutation, such as malignancy which means that they can spread into, or invade nearby tissues. In addition, as these tumours grow, some cancer cells break off and travel to distant parts of the body and form new tumours far from the original site.


Accordingly, although every cell of a particular cancer is related to the same original “parent” cell, the mixture of cells within a tumour becomes increasingly complex. The idea that different kinds of cells make up one cancer is called “tumour heterogeneity”, and in practice means that every cancer is unique. So two people with, say, lung cancer who are the same age, height, weight, and ethnicity, and who have similar medical histories, will almost certainly have two very different cancers.

By the time a cancer tumour is 1cm in diameter, the millions of cells within it are very different from each other, and each cancer has its own genetic identity created by the DNA in its cells.


This, of course, makes the treatment of cancer incredibly difficult and explains why scientific breakthroughs in the understanding of cancer biology do not always lead to significant improvements in overall survival rates.

How will cancer treatment change?

Precision medicine is an approach to patient care that allows doctors to select the best treatments for patients based on a genetic understanding of their disease. The idea of precision medicine is not new, but recent advances in science and technology have allowed the ideas to be brought more fully into clinical use.

Normally, when a patient is diagnosed with cancer, he or she receives a standard treatment based on previous experience of treating that disease. But typically, different people respond to treatments differently, and until recently doctors didn’t know why. But now the understanding that the genetic changes within one person’s cancer may not occur in others with the same type of cancer has led to a better understanding of which treatments will be most effective.

At the simplest level, this understanding allows targeted therapy against cancer, in which drugs (quite often complex biological molecules) are used to target very specific genetic changes in cancer cells. For example, around 15–20% of malignant breast cancers contain cells with a higher than normal level of a protein called HER2 on their surface, which stimulates them to grow. When combined with a suitable test, it means that not only can the drug be given to those patients most likely to benefit, but also the drug, with its associated side effects, need not be given to patients who will not benefit from its use.

So genetic medicine has already transformed the treatment of some cancer patients. The advent of widespread genetic medicine within the NHS is likely to lead to significant benefits for cancer patients, including:

• The identification of patients who are most likely to benefit from particular cancer therapy.

• The avoidance of unnecessary treatments that are less likely to work for specific groups of patients.

• The development of novel therapies targeted at specific tumour cells or cellular pathways.


Not only will precision medicine allow the development of precise and effective treatment strategies for cancer patients whilst improving the overall quality of life, but it will also finally destroy the myth of ‘one size fits all’ cancer therapy.

For an informative chat on how Plextek can assist with your Healthcare technology project, please contact Nigel at healthcare@plextek.com

Save

Save

Save

Save

Save

Save

Save

Save

Save

Being Your User

Nicholas Hill - Chief Executive Officer

By: Nicholas Hill
Chief Executive Officer

19th December 2018

Home » Insights » Life Science

One of the important steps in the Design Council’s recommendations for good design is called “Being Your Users” and is a “Method to put yourself into the position of your user.” Its purpose is “building an understanding of and empathy with the users of your product …” Approaching product design from this perspective is critical to ensuring that the features incorporated are actually beneficial to the user – as opposed to features that are of benefit to the manufacturer, for example, or “because we can” features that have no obvious benefit at all.

It’s clear that domestic appliances are becoming more sophisticated, a trend which is facilitated by the availability of low-cost sensors and processing power. This has some clear benefits, such as the availability of more energy- or water-efficient wash cycles for example. And if designers stay focused on providing something of value to the end user this is a trend to be welcomed.

In practice, I see examples of what looks rather like engineers wondering what else they can do with all this additional sensor data, rather than being driven by user need. One example is the growing size of the error codes table in the back of most appliance manuals. These may occasionally add value, but for the most part, I see them as reasons why the product you paid good money for is refusing to do the job it is supposed to.

Here’s an example: the “smart” washing machine that I own doesn’t like low water pressure. It has a number of error codes associated with this. What does it do if the mains pressure drops temporarily – e.g. if simultaneously a toilet is flushed and the kitchen tap is running? It stops dead, displays the error code and refuses to do anything else until you power off the machine at the wall socket, forcing you to start the wash cycle again from scratch. This gets even more annoying if you’d set the timer and come back to a half-washed load. In the days before “smart” appliances, a temporary pressure drop would have either simply caused the water to fill more slowly, or else the machine would pause until pressure returned.

In what way does this behaviour benefit the user? Clearly, it doesn’t, and a few moments thought from a design team that was focussed on user needs, “being your user”, would have resulted in a different requirement specification being handed to the engineering team. It’s a good example of what happens when you start implementing a solution without properly considering the problem you are trying to solve.

My “intelligent” dishwasher has a different but equally maddening feature: it doesn’t like soft water. Its designers have clearly put water saving above all else, and the machine relies on either hard water or very dirty plates to counteract the natural foaming of the detergent tablets. With soft water, if you try washing lightly soiled dishes on a quick wash cycle (as you might expect appropriate), the machine is unable to rinse off the detergent. About 20 minutes into the cycle it skips to the end and gives up, leaving you with foamy, unrinsed plates.

I say unable, when the machine is actually unwilling, as all that is required is the application of sufficient water to rinse off the detergent – which is what I, as a user, then have to do manually. Who is working for whom here? Once again the user’s needs have not been at the top of the designer’s agenda when the requirement specification was passed to the engineering team. A truly smart device would finish the job properly, using as much water as was needed, and possibly suggest using less detergent next time.

Unless designers get a better grip, keeping the end user experience on the agenda, I fear examples of this type of machine behaviour will proliferate. We will see our devices, appliances and perhaps vehicles develop an increasingly long list of reasons why they can’t (won’t) perform the function you bought them for – because they’re having a bad hair day today, which becomes your problem to solve.

All to a refrain of “I’m sorry Dave, I’m afraid I can’t do that.”

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

One of the important steps in the Design Council’s recommendations for good design is called “Being Your Users” and is a “Method to put yourself into the position of your user.” Its purpose is “building an understanding of and empathy with the users of your product …” Approaching product design from this perspective is critical to ensuring that the features incorporated are actually beneficial to the user – as opposed to features that are of benefit to the manufacturer, for example, or “because we can” features that have no obvious benefit at all.

It’s clear that domestic appliances are becoming more sophisticated, a trend which is facilitated by the availability of low-cost sensors and processing power. This has some clear benefits, such as the availability of more energy- or water-efficient wash cycles for example. And if designers stay focused on providing something of value to the end user this is a trend to be welcomed.

In practice, I see examples of what looks rather like engineers wondering what else they can do with all this additional sensor data, rather than being driven by user need. One example is the growing size of the error codes table in the back of most appliance manuals. These may occasionally add value, but for the most part, I see them as reasons why the product you paid good money for is refusing to do the job it is supposed to.

Here’s an example: the “smart” washing machine that I own doesn’t like low water pressure. It has a number of error codes associated with this. What does it do if the mains pressure drops temporarily – e.g. if simultaneously a toilet is flushed and the kitchen tap is running? It stops dead, displays the error code and refuses to do anything else until you power off the machine at the wall socket, forcing you to start the wash cycle again from scratch. This gets even more annoying if you’d set the timer and come back to a half-washed load. In the days before “smart” appliances, a temporary pressure drop would have either simply caused the water to fill more slowly, or else the machine would pause until pressure returned.

In what way does this behaviour benefit the user? Clearly, it doesn’t, and a few moments thought from a design team that was focussed on user needs, “being your user”, would have resulted in a different requirement specification being handed to the engineering team. It’s a good example of what happens when you start implementing a solution without properly considering the problem you are trying to solve.

My “intelligent” dishwasher has a different but equally maddening feature: it doesn’t like soft water. Its designers have clearly put water saving above all else, and the machine relies on either hard water or very dirty plates to counteract the natural foaming of the detergent tablets. With soft water, if you try washing lightly soiled dishes on a quick wash cycle (as you might expect appropriate), the machine is unable to rinse off the detergent. About 20 minutes into the cycle it skips to the end and gives up, leaving you with foamy, unrinsed plates.

I say unable, when the machine is actually unwilling, as all that is required is the application of sufficient water to rinse off the detergent – which is what I, as a user, then have to do manually. Who is working for whom here? Once again the user’s needs have not been at the top of the designer’s agenda when the requirement specification was passed to the engineering team. A truly smart device would finish the job properly, using as much water as was needed, and possibly suggest using less detergent next time.

Unless designers get a better grip, keeping the end user experience on the agenda, I fear examples of this type of machine behaviour will proliferate. We will see our devices, appliances and perhaps vehicles develop an increasingly long list of reasons why they can’t (won’t) perform the function you bought them for – because they’re having a bad hair day today, which becomes your problem to solve.

All to a refrain of “I’m sorry Dave, I’m afraid I can’t do that.”

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save

Save