Plextek’s Annual Make-a-thon

Thomas Rouse - Senior Consultant, Medical & Healthcare

By: Thomas Rouse
Lead Consultant

24th October 2019

4 minute read

Home » Insights » Engineering » Plextek’s Annual Make-a-thon

Thomas Rouse explains what a make-a-thon is and why it’s important for innovation.

What is a Make-a-thon? Well for us it’s a more constructive version of a hackathon, both literally and metaphorically. Plextek’s annual Make-a-thon is a chance for graduates through to senior consultants to work in teams to make amazing creations in a day. Why is this important? As a company grows, activities like Make-a-thons can test our normal working practices, help us to focus on the essentials, evaluate what it means to be innovative and just have fun with our colleagues using lots of cool tools.

The Results:

Team Green UI (Richard Emmerson, Steve Fitz, Ben Skinner and Ivan Saunders) have developed a novel user interface that can tell users the weather using a visual dome display that mechanically points to different weather states: rain, snow, mist, fog, sun, day, night – also a lot more energy efficient than displaying on a screen. Interesting to see what you can do away from traditional display technology using energy-efficient methods.

Team Infant Suffocation ( Polly Britton, Daniel Tomlinson, Alan Cucknell, Edson Silva) have developed a proof of concept for new parents with infants. Monitoring the fluctuation of the infant’s chest (using a soft flexible strap) while breathing, the device would alert the parent if the infant’s breathing became irregular. Measuring the voltage across an electrically conductive material to monitor the breathing, the material’s resistance would change according to the pressure created by the force of an inhale/exhale. A low cost, low power solution that democratises baby safety.

Engineers

Team Posture Detection (Ehsan Abedi, Thomas Childs, Bhavin Patel, Gifty Mbroh) looked at developing a proof of concept that could take readings across a number of different points across the back to detect and alert the user to incorrect posture. A novel use of accelerometers that looks to address the health issues of bad posture, either from sitting or standing, for prolonged periods of time.

Team Microfluidics (Kieran Bhuiyan, Frederick Saunders, Poppy Oldroyd) aimed to demonstrate whether low-cost microfluidic systems can be made using rapid prototyping. A microfluidic channel was made in acrylic and various concentrations of saltwater were supplied to these channels. Measuring the rate of flow demonstrated that geometrically consistent channels could be made using rapid prototyping. The results of which proved that solutions with a higher salinity did indeed have a higher viscosity.

Team Autism EEG (Tom Rouse, Josip Rožman, Glenn Wilkinson, Elliot Langran) have developed a proof of concept system using real-time neurofeedback and a traffic light wristband. The idea is to assist autistic children in identifying emotions, as many have difficulty with this. Brainwaves measured using low-cost EEG sensors and a Raspberry Pi running a Multilayer perceptron (MLP) determined whether Elliot was calm or stressed and gave near-instant feedback. The model had been trained on the day especially for him, based on two 5 minute measurements while he was experiencing different emotions. The device can, therefore, be personalised to both the individual and the concepts they would like to understand.

This year’s make-a-thon was run our Summer student Poppy and myself. Many thanks Poppy!

As you can see, giving a short timeframe can focus the mind to create amazing solutions that otherwise could take longer. Lean working can create innovation where you least expect it!

If you have any questions about any of the projects and would like to know more about any of our projects in the make-a-thon, do get in touch – I’d love to hear from you!

Thomas Rouse explains what a make-a-thon is and why it’s important for innovation.

What is a Make-a-thon? Well for us it’s a more constructive version of a hackathon, both literally and metaphorically. Plextek’s annual Make-a-thon is a chance for graduates through to senior consultants to work in teams to make amazing creations in a day. Why is this important? As a company grows, activities like Make-a-thons can test our normal working practices, help us to focus on the essentials, evaluate what it means to be innovative and just have fun with our colleagues using lots of cool tools.

The Results:

Team Green UI (Richard Emmerson, Steve Fitz, Ben Skinner and Ivan Saunders) have developed a novel user interface that can tell users the weather using a visual dome display that mechanically points to different weather states: rain, snow, mist, fog, sun, day, night – also a lot more energy efficient than displaying on a screen. Interesting to see what you can do away from traditional display technology using energy-efficient methods.

Team Infant Suffocation ( Polly Britton, Daniel Tomlinson, Alan Cucknell, Edson Silva) have developed a proof of concept for new parents with infants. Monitoring the fluctuation of the infant’s chest (using a soft flexible strap) while breathing, the device would alert the parent if the infant’s breathing became irregular. Measuring the voltage across an electrically conductive material to monitor the breathing, the material’s resistance would change according to the pressure created by the force of an inhale/exhale. A low cost, low power solution that democratises baby safety.

Team Posture Detection (Ehsan Abedi, Thomas Childs, Bhavin Patel, Gifty Mbroh) looked at developing a proof of concept that could take readings across a number of different points across the back to detect and alert the user to incorrect posture. A novel use of accelerometers that looks to address the health issues of bad posture, either from sitting or standing, for prolonged periods of time.

Team Microfluidics (Kieran Bhuiyan, Frederick Saunders, Poppy Oldroyd) aimed to demonstrate whether low-cost microfluidic systems can be made using rapid prototyping. A microfluidic channel was made in acrylic and various concentrations of saltwater were supplied to these channels. Measuring the rate of flow demonstrated that geometrically consistent channels could be made using rapid prototyping. The results of which proved that solutions with a higher salinity did indeed have a higher viscosity.

Team Autism EEG (Tom Rouse, Josip Rožman, Glenn Wilkinson, Elliot Langran) have developed a proof of concept system using real-time neurofeedback and a traffic light wristband. The idea is to assist autistic children in identifying emotions, as many have difficulty with this. Brainwaves measured using low-cost EEG sensors and a Raspberry Pi running a Multilayer perceptron (MLP) determined whether Elliot was calm or stressed and gave near-instant feedback. The model had been trained on the day especially for him, based on two 5 minute measurements while he was experiencing different emotions. The device can, therefore, be personalised to both the individual and the concepts they would like to understand.

This year’s make-a-thon was run our Summer student Poppy and myself. Many thanks Poppy!

As you can see, giving a short timeframe can focus the mind to create amazing solutions that otherwise could take longer. Lean working can create innovation where you least expect it!

If you have any questions about any of the projects and would like to know more about any of our projects in the make-a-thon, do get in touch – I’d love to hear from you!

Top