
WHY USE GPUS

Fundamentally power dissipation requirements 
are limiting single-core CPU speeds but we 
selfishly want yet faster computing.

Graphics card Processing Units (GPUs) in recent 
years have moved from being highly specialised 
for graphics processing to being high speed 
general computing systems.

This process was started by NVIDIA but has 
been followed by AMD and Intel. Of particular 
advantage is that Graphics cards have a large 
number (100s) of individual processors compared 
to the standard CPU (with 4 to 12 cores).  With 
GPUs having a similar speed clock to modern 
CPUs this in theory leads to processing speed ups 
when looking at similar cost/power-consumption.

In the 1980s the world’s most powerful 
supercomputers were dominated by machines 
such as the Cray-2 which was a 1.9 GFlops 4-core 
system; the emphasis was on getting a few cores 
to run as fast as possible.  Today all the world’s 
most powerful supercomputers are massively 
parallel systems with hundreds-of-thousands or 
even millions of cores.  Some use bespoke cores 
but some just use a lot of GPUS.  For example the 

current second fastest computer in the world, 
Titan, a Cray XK7, running at 17.59 PFlops is 
based on 261,632 NVidia K20x cores.

ENTER CUDA

CUDA is a parallel computing platform and 
application programming interface (API) model 
created by NVIDIA. It allows software developers 
to use a CUDA-enabled graphics processing 
unit (GPU) for general purpose processing an 
approach known as GPGPU1. The CUDA platform 
is a software layer that gives direct access to 
the GPU’s virtual instruction set and parallel 
computational elements.

The CUDA platform is designed to work with 
programming languages such as C, C++ and 
Fortran. In form it looks very similar to C.  This 
accessibility makes it easier for specialists in 
parallel programming to utilize GPU resources, as 
opposed to previous API solutions like Direct3D 
and OpenGL, which required advanced skills in 
graphics programming. Also, CUDA supports 
programming frameworks such as OpenACC 
and OpenCL. When it was first introduced by 
NVIDIA, the name CUDA was an acronym for 
Compute Unified Device Architecture, but NVIDIA 
subsequently dropped the use of the acronym.

The remaining disadvantage is that in order 
to take advantage of the GPU paradigm you 
need the ability to process tasks with different 
threads running lockstep in parallel rather 
than sequentially.  As expected this produces 
limitations both in algorithm design and 
implementation.  Fortunately many common 
computing tasks can be redesigned so they can 
be processed in parallel.
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Figure 1: A block diagram of NVidia’s Pascal GPU: Each 
small green square is a FP32 processing core.  Each small 
yellow square is a FP64 core.



THEORETICAL PERFORMANCE

As will be seen, the theoretical 32-bit (single 
precision) processing capability of GPUS now 
significantly exceeds those of even high cost 
CPUs, even when dealing with relatively cheap 
GeForce gaming orientated GPUs.

With 64-bit (double precision) the performance 
of the cheap GeForce GPUs falls to around 
that of the CPUs but NVidia provide Tesla 
class GPUs which keep the majority of their 
32-bit performance when performing 64-bit 
calculations.  This is all whilst maintaining similar 
power consumption to the CPU.

PRACTICAL GPU PERFORMANCE

Whilst GPUs have a massive theoretical 
performance advantage over CPUs this is only 
for those problems which are truly parallel 
computations.   In practice most problems have 
some sequential elements which restrict the 
speed-up available from a GPU.

Remember however that for the CPUs too the 
theoretical performance is only possible if all the 
cores can be used simultaneously.  Whilst this 
is easier to achieve than true lockstep parallel 
processing it still requires significant work.  
Where this does not happen the performance 
of a single CPU core remains stubbornly stuck 
at under 40GFlops, over 100 times slower than 
many GPUs.

Secondly many real world problems are often 
limited by how fast data can be transferred to/
from the GPU.   Tasks which require a lot of data 
transfers are harder to speed up than those 
which are dominated by the sheer amount of 
computing required.

Processor GFlops (FP32/FP64) Cost/$ (Jan ’16) Power/W Architecture

Xeon E5-2699 v3 700+/700+ 4500 145 18 core 2.3GHz

Xeon E5-2698 v3 600/600 3750 135 16 core 2.3GHz

i7-5960x 176/ 176 1000 140 8 core 3GHz

GeForce GTX 950 2308 / 49 200 120 768 cores 1.2GHz

GeForce GTX1080Ti 10608 / 332 800 (Mar ’17) 250 3584 cores 1.5GHz

Tesla K40 5000 / 1500 2500 235 2880 cores @ 
0.8GHz

Tesla P100 10000 /5000 10000 (Mar ’16) 250 3584 cores @ 
1.4GHz

Jetson TX2 1500 400 (Mar ’17) 10 256 cores GPU + 
Quad core Arm A57

Table 1: Performance of various processors (Grey = CPUs, Blue = PC based GPU, Green = Embedded SoC)

Figure 2: NVidia Jetson TX2 System-on-chip



Debunking the 100x GPS vs. GPU Myth: An 
Evaluation of Throughput Computing on CPU and 
GPU (Lee, Kim et al, ISCA’10 June 19-23, 2010, 
Saint Malo, France) showed that the type of 
application made a big difference as to the 
degree of speed up possible on GPUs vs CPUs.  
For the chips examined (i7 and GTX 280) it found 
that GPUS were typically 3 times faster than CPUs 
across numerous different types of computing 
problems with a range between 1:0.5 (GPU slower 
than a CPU) through to 1:14.9 depending on the 
precise problem.

EMBEDDED GPUS

The final line in Table 1 above shows the 
alternative way of imagining GPUs.  Instead of 
looking at increasing the maximum amount of 
processing power look at the problem as being 
reducing the total amount of electrical power 
required to perform a particular computing task 
such as machine vision or running the processing 
for an airborne radar.

There are many situations where low-SWaP (low 
Size, Weight and Power) is essential.  Traditionally 
this meant either low computing power (a 
single embedded micro-processor or DSP) or a 
bespoke FPGA solution with the associated lack 
of flexibility but with a complicated long and high 
cost development.

Embedded GPUs such as the NVidia Jetson TX2 
offers another possibility.  The platform is credit 
card sized, 87 x 50mm, weighs 88g and takes a 
maximum of 15W.  Via its GPU this low-SWAP 
solution still offers processing power of the order 
of a mains-powered high-end PC but with a much 
quicker and cheaper development path than an 
FPGA.

SUMMARY

Some problems are very efficient on GPUs.  Some 
are more efficient on modern CPUs. Raw GFLOP 
processing power seems to drive the average 
case.

In general for single-precision mathematics if the 
problem can run in parallel even cheap gaming 
orientated GPUs are frequently faster than CPUs.
For double-precision mathematics NVidia’s 
gaming orientated GPUs have deliberately 
weakened performance, though still similar to a 
high class CPU.  Their Tesla class GPUs however 
have similar performance processing double-
precision as for single-precision mathematics.
SoCs such as NVidia’s Jetson TX2 offers the 
possibility of Intel i7 level processing but whilst 
only requiring low power.
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