
WHY USE GPUS

Fundamentally power dissipation requirements
are limiting single-core CPU speeds but we
selfishly want yet faster computing.

Graphics card Processing Units (GPUs) in recent
years have moved from being highly specialised
for graphics processing to being high speed
general computing systems.

This process was started by NVIDIA but has
been followed by AMD and Intel. Of particular
advantage is that Graphics cards have a large
number (100s) of individual processors compared
to the standard CPU (with 4 to 12 cores). With
GPUs having a similar speed clock to modern
CPUs this in theory leads to processing speed ups
when looking at similar cost/power-consumption.

In the 1980s the world’s most powerful
supercomputers were dominated by machines
such as the Cray-2 which was a 1.9 GFlops 4-core
system; the emphasis was on getting a few cores
to run as fast as possible. Today all the world’s
most powerful supercomputers are massively
parallel systems with hundreds-of-thousands or
even millions of cores. Some use bespoke cores
but some just use a lot of GPUS. For example the

current second fastest computer in the world,
Titan, a Cray XK7, running at 17.59 PFlops is
based on 261,632 NVidia K20x cores.

ENTER CUDA

CUDA is a parallel computing platform and
application programming interface (API) model
created by NVIDIA. It allows software developers
to use a CUDA-enabled graphics processing
unit (GPU) for general purpose processing an
approach known as GPGPU1. The CUDA platform
is a software layer that gives direct access to
the GPU’s virtual instruction set and parallel
computational elements.

The CUDA platform is designed to work with
programming languages such as C, C++ and
Fortran. In form it looks very similar to C. This
accessibility makes it easier for specialists in
parallel programming to utilize GPU resources, as
opposed to previous API solutions like Direct3D
and OpenGL, which required advanced skills in
graphics programming. Also, CUDA supports
programming frameworks such as OpenACC
and OpenCL. When it was first introduced by
NVIDIA, the name CUDA was an acronym for
Compute Unified Device Architecture, but NVIDIA
subsequently dropped the use of the acronym.

The remaining disadvantage is that in order
to take advantage of the GPU paradigm you
need the ability to process tasks with different
threads running lockstep in parallel rather
than sequentially. As expected this produces
limitations both in algorithm design and
implementation. Fortunately many common
computing tasks can be redesigned so they can
be processed in parallel.

GPU Computing

1 General-purpose computing on Graphics Processing Units

Figure 1: A block diagram of NVidia’s Pascal GPU: Each
small green square is a FP32 processing core. Each small
yellow square is a FP64 core.

THEORETICAL PERFORMANCE

As will be seen, the theoretical 32-bit (single
precision) processing capability of GPUS now
significantly exceeds those of even high cost
CPUs, even when dealing with relatively cheap
GeForce gaming orientated GPUs.

With 64-bit (double precision) the performance
of the cheap GeForce GPUs falls to around
that of the CPUs but NVidia provide Tesla
class GPUs which keep the majority of their
32-bit performance when performing 64-bit
calculations. This is all whilst maintaining similar
power consumption to the CPU.

PRACTICAL GPU PERFORMANCE

Whilst GPUs have a massive theoretical
performance advantage over CPUs this is only
for those problems which are truly parallel
computations. In practice most problems have
some sequential elements which restrict the
speed-up available from a GPU.

Remember however that for the CPUs too the
theoretical performance is only possible if all the
cores can be used simultaneously. Whilst this
is easier to achieve than true lockstep parallel
processing it still requires significant work.
Where this does not happen the performance
of a single CPU core remains stubbornly stuck
at under 40GFlops, over 100 times slower than
many GPUs.

Secondly many real world problems are often
limited by how fast data can be transferred to/
from the GPU. Tasks which require a lot of data
transfers are harder to speed up than those
which are dominated by the sheer amount of
computing required.

Processor GFlops (FP32/FP64) Cost/$ (Jan ’16) Power/W Architecture

Xeon E5-2699 v3 700+/700+ 4500 145 18 core 2.3GHz

Xeon E5-2698 v3 600/600 3750 135 16 core 2.3GHz

i7-5960x 176/ 176 1000 140 8 core 3GHz

GeForce GTX 950 2308 / 49 200 120 768 cores 1.2GHz

GeForce GTX1080Ti 10608 / 332 800 (Mar ’17) 250 3584 cores 1.5GHz

Tesla K40 5000 / 1500 2500 235 2880 cores @
0.8GHz

Tesla P100 10000 /5000 10000 (Mar ’16) 250 3584 cores @
1.4GHz

Jetson TX2 1500 400 (Mar ’17) 10 256 cores GPU +
Quad core Arm A57

Table 1: Performance of various processors (Grey = CPUs, Blue = PC based GPU, Green = Embedded SoC)

Figure 2: NVidia Jetson TX2 System-on-chip

Debunking the 100x GPS vs. GPU Myth: An
Evaluation of Throughput Computing on CPU and
GPU (Lee, Kim et al, ISCA’10 June 19-23, 2010,
Saint Malo, France) showed that the type of
application made a big difference as to the
degree of speed up possible on GPUs vs CPUs.
For the chips examined (i7 and GTX 280) it found
that GPUS were typically 3 times faster than CPUs
across numerous different types of computing
problems with a range between 1:0.5 (GPU slower
than a CPU) through to 1:14.9 depending on the
precise problem.

EMBEDDED GPUS

The final line in Table 1 above shows the
alternative way of imagining GPUs. Instead of
looking at increasing the maximum amount of
processing power look at the problem as being
reducing the total amount of electrical power
required to perform a particular computing task
such as machine vision or running the processing
for an airborne radar.

There are many situations where low-SWaP (low
Size, Weight and Power) is essential. Traditionally
this meant either low computing power (a
single embedded micro-processor or DSP) or a
bespoke FPGA solution with the associated lack
of flexibility but with a complicated long and high
cost development.

Embedded GPUs such as the NVidia Jetson TX2
offers another possibility. The platform is credit
card sized, 87 x 50mm, weighs 88g and takes a
maximum of 15W. Via its GPU this low-SWAP
solution still offers processing power of the order
of a mains-powered high-end PC but with a much
quicker and cheaper development path than an
FPGA.

SUMMARY

Some problems are very efficient on GPUs. Some
are more efficient on modern CPUs. Raw GFLOP
processing power seems to drive the average
case.

In general for single-precision mathematics if the
problem can run in parallel even cheap gaming
orientated GPUs are frequently faster than CPUs.
For double-precision mathematics NVidia’s
gaming orientated GPUs have deliberately
weakened performance, though still similar to a
high class CPU. Their Tesla class GPUs however
have similar performance processing double-
precision as for single-precision mathematics.
SoCs such as NVidia’s Jetson TX2 offers the
possibility of Intel i7 level processing but whilst
only requiring low power.

Author: Peter Debenham
Date: June 2017

