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Abstract 
This paper presents the results of a significant number of propagation measurements 
performed at 3.5 GHz in urban environments.  Furthermore, the data collected is used to 
derive a statistical path loss model over the range 100 m to 2 km.  This work offers 
valuable propagation measurements in a frequency range that is globally being allocated 
for broadband wireless systems. 
 
Introduction 
Over the period from December 2003 to June 2004, a large number of propagation 
surveys were conducted by Plextek and LCC UK on behalf of a client operating a radio 
network at 3.5 GHz.  Measurements were performed in urban environments within major 
cities of the United Kingdom (London, Birmingham, Liverpool and Manchester amongst 
others). 
 
Although numerous path loss models are available (including the Hata [1] and COST 231 
Walfisch-Ikegami [2] models) that describe propagation in urban, suburban or rural 
environments, they tend to be limited to the lower frequency bands (up to 2 GHz) and to 
large ranges (1–20 km) in the case of the Hata model.  This provided the motivation to 
use the measured path loss data at 3.5 GHz to derive a log-normal shadow fading model 
appropriate for the actual measurement environment.  This was found to agree very well 
with published work at other frequencies [3]. 
 
Measurement Equipment and Technique 
The propagation survey equipment and data acquisition software was developed to give 
system flexibility, thus allowing surveys at other frequencies to be readily undertaken 
should the need arise in the future.  The survey system consisted of a base and a mobile 
station, using identical vertical half-wave dipoles as the antennas.  Choke baluns were 
incorporated to prevent distortion of the radiation pattern owing to feed-line radiation.  
The base station was mounted at heights of typically 20 m 5 m on either a rooftop or at 
the top of a trailer mast.  Signal generation at the base station was provided by a variable 
frequency microwave signal generator driving a power amplifier.  The total conducted 
RF transmit power delivered to the antenna was 2 W.  The mobile station was mounted in 
a survey vehicle with its antenna at a height of 2.5 m above ground level.  The mobile 
receiver comprised a low noise amplifier with appropriate band pass filters connected to a 
spectrum analyser.  PC based acquisition software controlled the spectrum analyser via 
GPIB and stored raw survey data (including GPS time and position co-ordinates) to hard 
disk.  The received signal strength was sampled and averaged according to the Lee 
sampling criteria to remove fast-fading effects and obtain the mean signal strength [4].  
Sampling parameters are dependent on the frequency of operation and the mobile station 
velocity. 
 
Measurement Results 
A straight line fit to each measured data set was performed using least squares 
approximation.  Although measurement distances extended to about 5 km, the analysis 
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ranges were limited to prevent excess bias of the least squares approximation.  The lower 
limit (typically 100 m or more) reduced the effect of position measurement errors and to 
exclude data that suited an alternative model (i.e. two ray line-of-sight).  At ranges 
greater than the upper limit (typically less than or equal to 2.2 km), data was excluded as 
the signal level approached the receiver noise floor. 
 
The least squares approximation results in a log-normal shadow fading model that is 
given by [5] 
 

010 /log10 ddAPathLossdB    (1) 
 

/4log20 010 dA      (2) 
 
where A is the free space path loss at range d0,  is the operating wavelength,  is the path 
loss exponent, d is the range variable and  is the fading error.  The fading error  
typically has a log-normal distribution with standard deviation . 
 
Figure 1 shows a typical measured path loss data set with the least squares approximation 
superimposed.  The distribution of the fading error is shown in Figure 2 and can be seen 
to be log-normal.  For the example data set, d0 = 64 m,  = 4.2 and  = 7.3 dB. 
 
The least squares approximations for all data sets (28 in total) are collated in Figure 3.  
For these, the mean log-normal shadow model parameters are: 
 

d0mean = 73 m;          mean = 4.3;          mean = 7.5 dB;          Amean = 80.6 dB. 
 
Figure 4 shows the distribution of path loss exponent , which appears to be Gaussian in 
shape.  A few values result in the mean path loss exponent being higher than the mode.  
The mode lies in the range of 3.5-4.0, which is typically the path loss exponent using the 
Hata model for large base station antenna heights and also observed frequently in other 
urban propagation measurements [3].  Shown in Figure 5 is the distribution of log10 d0, 
which also appears to be Gaussian.  The mode lies in the range of 1.5-2.0, thus 
correlating with the mean of 73 m (log10 73 = 1.86).  Figure 6 shows the distribution of 
the fading error standard deviation, with the majority lying in the range of 6-9 dB.  
Similar values have been observed in propagation surveys at 1.9 GHz [6].  Although not 
appearing Gaussian in shape, the standard deviation of this distribution is 1.4 dB, which 
is the same as that of mean / N (where N is 28).  This suggests that the distribution 
might be Gaussian if more data sets had been included. 
 
A further refinement to this model would be the inclusion of antenna height and terrain 
specific parameters as used in a similar 1.9 GHz model [6]. 
 
Summary 
A log-normal shadow fading path loss model for urban propagation at 3.5 GHz over the 
range 100 m to 2 km has been presented.  The model is based on a large number of 
measured data sets obtained in the United Kingdom and agrees very well with published 
work at other frequencies.  This work offers valuable propagation measurements for a 
frequency range that is increasingly being allocated for broadband wireless networks 
internationally. 
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Least Squares Approximation Of All Measured Path Loss Data

80

90

100

110

120

130

140

150

10 100 1000 10000

Range (m)

Pa
th

 L
os

s 
(d

B
)

 
Figure 3: Least squares approximation of all measured path loss data sets 
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Figure 4: Distribution of path loss exponent from least squares approximation of all data sets 
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Figure 5: Distribution of log10 d0 obtained from least squares approximation of all data sets 
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Figure 6: Distribution of standard deviation of fading error for all data sets 


