Home Articles Will robots ever fight our wars?

Will robots ever fight our wars?

A visual representation of: Will robots ever fight our wars

Will robots ever fight our wars?

Defence has always been at the forefront of innovation, with considerable funds being allocated to Science & Technology (S&T) progression among the world’s most advanced military nations.

Given the threat to life involved in warfare, it is no surprise that robotics receives considerable attention amongst these communities.

In addition, the increasing prevalence of Cyber & Electromagnetic Activities (CEMA) on the battlespace clearly lends itself to the use of Robotic and Automated systems, owing to their ability to receive, process and analyse digital information at pace. So where within defence is robotics likely to have the greatest impact?

First and foremost, let’s tackle the ‘Terminator’-related images that spring to mind for most movie-goers when imagining robotics in war. The International Law of Armed Conflict (LOAC) applies four principles to any act of war: Proportionality, Distinction, Military Necessity and Humanity.

The principle of greatest concern when considering any kind of autonomous targeting is likely Distinction – that is, can the system provide enough assurance that the intended target is correct, and that the likelihood of error or collateral damage is small enough to make the resulting action justifiable?

Human-in-the-loop

Any autonomous system could be considered as a black box to the military user, as it’s unlikely military personnel would be able to read and understand the software through which the system makes decisions.

Errors in judgement are therefore both unpredictable and unexplainable, so a user will find it very difficult to be assured that the system will always comply with the law. Even more importantly, the ethical considerations behind such a decision are extremely complex and require a much broader understanding of the operational environment (far beyond that comprehendible by the systems of today) to consider proportionality, necessity, or humanity.

As a result, the UK MOD’s policy is to always have a human in-the-loop where offensive weapons are concerned. While a system may support targeting and processing information, or assessing the impact of an action, a human will always be responsible for pulling the trigger and always bear responsibility for doing so.

In addition to the above, walking robots are somewhat impractical: despite some genuinely having better mobility than my own, they are heavy, have large power requirements, are not inconspicuous and are difficult to maintain in the field. While I can imagine ‘follower’ robots conducting tasks like carrying supplies or evacuating casualties in future, we’re still proving that concept with relatively simpler land and airborne vehicles today.

Autonomous resupply

Project THESEUS, named after the mythical slayer of the Minotaur, is the UK MOD’s effort to conduct autonomous resupply. It focuses on ‘last-mile resupply’ at the tactical edge, which is typically where the threat to life is the greatest. It makes perfect sense, then, to avoid risking our soldiers for activities that could quite conceivably be managed by a robotic platform.

Imagine a soldier on the frontline is running low on ammunition, and so the storeman at the rear loads up a drone or self-driving vehicle with some boxes or crates and either sends it off to the soldier’s location, or perhaps offers it a route via plotting some waypoints.

The same platform could be used to deliver medical supplies safely around the battlefield or be loaded with stretchers to move people more quickly back through the medical support chain without taking resources away from the front. Of course, Amazon is making strides in drone-based shipping under similar principles.

Land-resupply tends to be more difficult, particularly in warzones where infrastructure may be destroyed, or the recipients are located in difficult to reach hideouts. Anecdotally, I was told a story of how during one trial a vehicle identified a farmer’s track as a road and promptly tipped itself over.

Due to the black box nature described above, it’s challenging for users to understand why that decision was made and until sufficient time and testing has passed, there will always be a fear that an unknown decision could disrupt an operation at a moment’s notice.

For that reason, today these testing environments typically have more engineers present from industry than there are soldiers testing the equipment. There are additional challenges to consider in the employment of such systems: the load carried will be valuable to potential interceptors and so will need an element of protection. Also, routes selected will need to cater for the tactical environment – that is, not give away the position of a unit by loudly parking up next to it.

Swarming drones

Robotics may also be employed in a pack, rather than individually, to achieve greater effect. The concept of swarming drones has been present for some time and is now being tested in earnest.

A swarm of drones can offer several benefits: they can quickly cover wide areas, employing a wide variety of formations, for example. They are harder to defeat due to their sheer number; any capability shared across the swarm will gracefully degrade rather than being immediately lost should single drones fail. Finally, different drones can have different payloads or tasks, creating a flexible unit with a broad range of potential effect, much like a group of riflemen carrying different equipment.

Whether via edge-computing or passing data through a network for processing elsewhere, a swarm of drones has a fantastic ability to soak up and react to information from across the battlefield. Likely applications will include Intelligence, Surveillance, Target Acquisition and Reconnaissance (ISTAR) – in short, observing and analysing the battlefield – Electronic Warfare (EW) – comprising receiving and reacting to wireless signals of interest from communications and sensing systems, and Communications, creating ad-hoc networks to move information around the battlefield.

These data-centric tasks are one area where robotics and automation can excel in defence today: very quickly processing vast amounts of varied information and sharing the insights across a network at speeds that humans simply can’t keep up with. Employing elements of autonomy allows the swarm to be commanded by a single individual, meaning one soldier can do the jobs of many, which in defence parlance is referred to as a ‘force-multiplier’.

Spot the dog

Finally, a note on robot dogs. You will be hard-pressed to attend a defence exhibition without tripping over a Spot, peering up at you with a camera-face or offering some form of marketing collateral. Purchased and paraded by leading military units across the world, some scepticism remains about their utility amongst the wider military community. Perhaps they are better considered as a novel platform rather than a stand-alone solution.

Employment examples include offering perimeter surveillance patrols (fleets can conduct complex routes across uneven ground before resting to re-charge) and counter-IED tasks (where today’s C-IED robots can be defeated by stairs, much like Daleks).

But can they be weaponised? Boston Dynamic’s policy is no, whereas Ghost Robotics has a slightly more relaxed position. They will not be alone. As competitor companies, nations, and non-state actors progressively weaponise their own robotics, we must find ways to ensure the Laws of Armed Conflict continue to be upheld.

Contact Plextek

Contact Us

Got a question?

If you have got a question, or even just an idea, get in touch


Technology Platforms

Plextek's 'white-label' technology platforms allow you to accelerate product development, streamline efficiencies, and access our extensive R&D expertise to suit your project needs.

  • 01 Configurable mmWave Radar Module

    Plextek’s PLX-T60 platform enables rapid development and deployment of custom mmWave radar solutions at scale and pace

    Configurable mmWave Radar Module
  • 02 Configurable IoT Framework

    Plextek’s IoT framework enables rapid development and deployment of custom IoT solutions, particularly those requiring extended operation on battery power

    Configurable IoT Framework
  • 03 Ubiquitous Radar

    Plextek's Ubiquitous Radar will detect returns from many directions simultaneously and accurately, differentiating between drones and birds, and even determining the size and type of drone

    Ubiquitous Radar
Enhancing communication and safety in mining: the role of custom RF system design

We explore the role of custom RF system design in communication and safety within the mining industry, ensuring robust data handling and operational efficiency in challenging conditions.

High-Performance mm-Wave Radar System for in-orbit micro-debris detection - capable of detecting fast-moving particles with relative velocities of up to 15.2 km/s at distances over 60 metres away
Continuing to Lead in Radar Development for Pioneering CLEAR Mission

We continue to advance radar technology for the CLEAR mission, reinforcing the partnership with ClearSpace and the UK Space Agency for sustainable space safety and debris removal.

Revolutionising chronic pain management
Revolutionising chronic pain management

Fusing mmWave technology and healthcare innovation to devise a ground-breaking, non-invasive pain management solution, demonstrating our commitment to advancing healthtech.

An artistic impression of the CLEAR mission. © ClearSpace
Pioneering Advanced In-Orbit Servicing

Pioneering a ground-breaking collaboration in advanced in-orbit servicing, setting new benchmarks for space debris removal and satellite maintenance.

A visual representation of: SSL The Revolution Will Not Be Supervised
SSL: The Revolution Will Not Be Supervised

Exploring the cutting-edge possibilities of Self-Supervised Learning (SSL) in machine learning architectures, revealing new potential for automatic feature learning without labelled datasets in niche and under-represented domains.

Unlocking the mysteries of imaging radar data processing

Looking deeper into the cutting edge of imaging radar data processing, where innovative techniques and practical applications combine to drive forward solutions.

Evolving silicon choices in the AI age
Evolving silicon choices in the AI age

How do you choose? We explore the complexities and evolution of processing silicon choices in the AI era, from CPUs and GPUs to the rise of TPUs and NPUs for efficient artificial intelligence model implementation.

A visual representation of: Advancing space technology solutions through innovation
Advancing space technology solutions through innovation

At the forefront of space technology innovation, we address complex engineering challenges in the sector, delivering low size, weight, and power solutions tailored for the harsh environment of space.

A visual representation of: A Programmer's Introduction to Processing Imaging Radar Data
A Programmer’s Introduction to Processing Imaging Radar Data

A practical guide for programmers on processing imaging radar data, featuring example Python code and a detailed exploration of a millimetre-wave radar's data processing pipeline.

Folded Antennas; An Important Point of Clarification

Exploring the essential nuances of folded antennas, ensuring precision and clarity in this critical aspect of RF engineering and design.

Innovation Strategies in Times of Scarcity
Innovation Strategies in Times of Scarcity

In scenarios where scarcity reshapes the business landscape—where customers are limited or prohibited from accessing stores and bars, supply chains are fragmented, and financial instability is rampant—how can innovation move forward?

A visual representation of: Running engineering projects sustainability
Running engineering projects sustainably

Outlining how sustainable practices were integrated into engineering projects, covering all ESG (Environmental, Social, Governance) aspects from reducing economic inequality to combating climate change.


Related Technical Papers

View All
an image of our technical paper
mmWave Imaging Radar

Camera systems are in widespread use as sensors that provide information about the surrounding environment. But this can struggle with image interpretation in complex scenarios. In contrast, mmWave radar technology offers a more straightforward view of the geometry and motion of objects, making it valuable for applications like autonomous vehicles, where radar aids in mapping surroundings and detecting obstacles. Radar’s ability to provide direct 3D location data and motion detection through Doppler effects is advantageous, though traditionally expensive and bulky. Advances in SiGe device integration are producing more compact and cost-effective radar solutions. Plextek aims to develop mm-wave radar prototypes that balance cost, size, weight, power, and real-time data processing for diverse applications, including autonomous vehicles, human-computer interfaces, transport systems, and building security.

an image of our technical paper
Low Cost Millimeter Wave Radio frequency Sensors

This paper presents a range of novel low-cost millimeter-wave radio-frequency sensors that have been developed using the latest advances in commercially available electronic chip-sets. The recent emergence of low-cost, single chip silicon germanium transceiver modules combined with license exempt usage bands is creating a new area in which sensors can be developed. Three example systems using this technology are discussed, including: gas spectroscopy at stand off distances, non-invasive dielectric material characterization and high performance micro radar.

an image of our technical paper
Ku-Band Metamaterial Flat-Panel Antenna for Satcom

This technical paper by Dr. Rabbani and his team presents research on metamaterial-based, high-gain, flat-panel antennas for Ku-band satellite communications. The study focuses on leveraging the unique electromagnetic properties of metamaterials to enhance the performance of flat-panel antenna designs, aiming for compact structures with high gain and efficiency. The research outlines the design methodology involving multi-layer metasurfaces and leaky-wave antennas to achieve a compact antenna system with a realised gain greater than +20 dBi and an operational bandwidth of 200 MHz. Simulations results confirm the antenna's high efficiency and performance within the specified Ku-band frequency range. Significant findings include the antenna's potential for application in low-cost satellite communication systems and its capabilities for THz spectrum operations through design modifications. The paper provides a detailed technical roadmap of the design process, supported by diagrams, simulation results, and references to prior work in the field. This paper contributes to the advancement of antenna technology and metamaterial applications in satellite communications, offering valuable insights for researchers and professionals in telecommunications.

an image of our technical paper
The Kootwijk VLF Antenna: A Numerical Model

A comprehensive analysis of the historical Kootwijk VLF (Very Low Frequency, which covers 3-30 kHz) antenna, including the development of a numerical model to gain insight into its operation. The Kootwijk VLF antenna played a significant role in long-range communication during the early 20th century. The paper addresses the challenge of accurately modelling this electrically small antenna due to limited historical technical information and its complex design. The main goal is to understand if the antenna’s radiation efficiency might explain why “results were disappointing” for the Kootwijk to Malabar (Indonesia) communications link. Through simulations and comparisons with historical records, the numerical model reveals that the Kootwijk VLF antenna had a low radiation efficiency – about 8.9% – for such a long-distance link. This work discusses additional loss mechanisms in the antenna system that might not have been considered previously, including increased transmission-line losses as a result of impedance mismatch, wires having a lower effective conductivity than copper and inductor quality factors being lower than expected. The study provides insights into key antenna parameters, such as the radiation pattern, the antenna’s quality factor, half-power bandwidth and effective height, as well as the radiated power level and the power lost through dissipation. This research presents the first documented numerical analysis of the Kootwijk VLF antenna and contributes to a better understanding of its historical performance. While the focus has been at VLF, this work can aid future modelling efforts for electrically small antennas at other frequency bands.

an image of our technical paper
The Radiation Resistance of Folded Antennas

This technical paper highlights the ambiguity in the antenna technical literature regarding the radiation resistance of folded antennas, such as the half-wave folded dipole (or quarter-wave folded monopole), electrically small self-resonant folded antennas and multiple-tuned antennas. The feed-point impedance of a folded antenna is increased over that of a single-element antenna but does this increase equate to an increase in the antenna’s radiation resistance or does the radiation resistance remain effectively the same and the increase in feed-point impedance is due to transformer action? Through theoretical analysis and numerical simulations, this study shows that the radiation resistance of a folded antenna is effectively the same as its single-element counterpart. This technical paper serves as an important point of clarification in the field of folded antennas. It also showcases Plextek's expertise in antenna theory and technologies. Practitioners in the antenna design field will find valuable information in this paper, contributing to a deeper understanding of folded antennas.

an image of our technical paper
Chilton Ionosonde Data & HF NVIS Predictions during Solar Cycle 23

This paper presents a comparison of Chilton ionosonde critical frequency measurements against vertical-incidence HF propagation predictions using ASAPS (Advanced Stand Alone Prediction System) and VOACAP (Voice of America Coverage Analysis Program). This analysis covers the time period from 1996 to 2010 (thereby covering solar cycle 23) and was carried out in the context of UK-centric near-vertical incidence skywave (NVIS) frequency predictions. Measured and predicted monthly median frequencies are compared, as are the upper and lower decile frequencies (10% and 90% respectively). The ASAPS basic MUF predictions generally agree with fxI (in lieu of fxF2) measurements, whereas those for VOACAP appear to be conservative for the Chilton ionosonde, particularly around solar maximum. Below ~4 MHz during winter nights around solar minimum, both ASAPS and VOACAP MUF predictions tend towards foF2, which is contrary to their underlying theory and requires further investigation. While VOACAP has greater errors at solar maximum, those for ASAPS increase at low or negative T-index values. Finally, VOACAP errors might be large when T-SSN exceeds ~15.

an image of our technical paper
Antenna GT Degradation with Inefficient Receive Antenna at HF

This paper presents the antenna G/T degradation incurred when communications systems use very inefficient receive antennas. This work is relevant when considering propagation predictions at HF (2-30 MHz), where it is commonly assumed that antennas are efficient/lossless and external noise dominates over internally generated noise at the receiver. Knowledge of the antenna G/T degradation enables correction of potentially optimistic HF predictions. Simple rules of-thumb are provided to identify scenarios when receive signal-to-noise ratios might be degraded.

an image of our technical paper
60 GHz F-Scan SIW Meanderline Antenna for Radar Applications

This paper describes the design and characterization of a frequency-scanning meanderline antenna for operation at 60 GHz. The design incorporates SIW techniques and slot radiating elements. The amplitude profile across the antenna aperture has been weighted to reduce sidelobe levels, which makes the design attractive for radar applications. Measured performance agrees with simulations, and the achieved beam profile and sidelobe levels are better than previously documented frequency-scanning designs at V and W bands.

an image of our technical paper
Midlatitude 5 MHz HF NVIS Links: Predictions vs. Measurements

Signal power measurements for a UK-based network of three beacon transmitters and five receiving stations operating on 5.290 MHz were taken over a 23 month period between May 2009 and March 2011, when solar flux levels were low. The median signal levels have been compared with monthly median signal level predictions generated using VOACAP (Voice of America Coverage Analysis Program) and ASAPS (Advanced Stand Alone Prediction System) HF prediction software with the emphasis on the near-vertical incidence sky wave (NVIS) links. Low RMS differences between measurements and predictions for September, October, November, and also March were observed. However, during the spring and summer months (April to August), greater RMS differences were observed that were not well predicted by VOACAP and ASAPS and are attributed to sporadic E and, possibly, deviative absorption influences. Similarly,the measurements showed greater attenuation than was predicted for December, January, and February, consistent with the anomalously high absorption associated with the “winter anomaly.” The summer RMS differences were generally lower for VOACAP than for ASAPS. Conversely, those for ASAPS were lower during the winter for the NVIS links considered in this analysis at the recent low point of the solar cycle. It remains to be seen whether or not these trends in predicted and measured signal levels on 5.290 MHz continue to be observed through the complete solar cycle.

an image of our technical paper
Electrically small monopoles: Classical vs. Self-Resonant

This paper shows that the Q-factor and VSWR of a monopole are significantly lowered when made resonant by reactive loading (as is used in practice). Comparison with a self-resonant Koch fractal monopole of equal height gives similar values of VSWR and Q-factor. Thus, the various electrically small monopoles (self-resonant and reactively loaded) offer comparable performance when ideal and lossless. However, in selecting the optimum design, conductor losses and mechanical construction at the frequency of interest must be considered. In essence, a trade-off is necessary to obtain an efficient, electrically small antenna suitable for the application in hand.

an image of our technical paper
Ku-Band Low-Sidelobe Waveguide Array

The design of a 16-element waveguide array employing radiating T-junctions that operates in the Ku band is described. Amplitude weighting results in low elevation sidelobe levels, while impedance matching provides a satisfactory VSWR, that are both achieved over a wide bandwidth (15.7-17.2 GHz). Simulation and measurement results, that agree very well, are presented. The design forms part of a 16 x 40 element waveguide array that achieves high gain and narrow beamwidths for use in an electronic-scanning radar system.

an image of our technical paper
5-50+ GHz Tapered-Slot Antenna for Handheld Devices

A lightweight, wideband tapered-slot antenna that uses an antipodal Vivaldi design and provides useable gain from ~5 GHz to in excess of 50 GHz is described. Simulations and measurements are presented that show excellent agreement. This antenna design is currently deployed in handheld test equipment.